Aqueous extract of Andean berry (Vaccinium meridionale Swartz) promotes antiproliferative effect of 5-fluorouracil and leucovorin treatment with or without oxaliplatin and inhibits metastatic potential in colon adenocarcinoma cells

Autores/as

DOI:

https://doi.org/10.35509/01239015.979

Palabras clave:

Vaccinium, colonic neoplasms, neoplasm metastasis, fluorouracil, leucovorin, oxaliplatin, fruit, cell line, tumor, phenols

Resumen

Objective: To determine the effect of the aqueous extract of Andean berry (Vaccinium meridionale Swartz) alone or in combination with 5-fluorouracil (5-FU), leucovorin (LEU), and oxaliplatin (OXA) on proliferation, adhesion, and metastatic potential in colon adenocarcinoma cell lines.

Methods: Sulforhodamine B assay was used to evaluate cell viability, and crystal violet staining was employed to assess the adhesion and cloning efficiency of SW480 and SW620 cells. Commercial kits were used to evaluate the migration, invasion capacity, and levels of matrix metalloproteinases-2, -7, and -9 in the SW620 cell line.

Results: The Andean berry extract (30% v/v) combined with the tested drugs showed a greater inhibitory effect on the viability of SW480 and SW620 cells than the drugs alone. The cloning efficiency of both cell lines was similar after treatment with drugs alone or combined with the extract. The extract decreased the adhesion of SW480 cells and also the migration and invasion of SW620 cells. Moreover, the drugs combined with the aqueous extract showed a greater inhibitory effect on the migration and invasion of SW620 cells than the drugs alone. The extract decreased the matrix metalloproteinase-9 (MMP-9) level of SW620 cells.

Conclusions: The aqueous extract of Andean berry promoted the antiproliferative effect of the combination of 5-FU, LEU, and OXA in SW480 and SW620 cells while showing a potential antimetastatic effect in SW620 cells.

Biografía del autor/a

Maria Bibiana Zapata-Londoño, Grupo de Investigación Impacto de los Componentes Alimentarios en la Salud, Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín, Colombia.

1. Grupo de Investigación Impacto de los Componentes Alimentarios en la Salud, Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín, Colombia.

Gustavo Argenor Lozano-Casabianca, Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín, Colombia.

2. Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín, Colombia.

Patricia Landázuri, Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia.

3. Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia.

Sandra Sulay Arango-Varela, Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia.

4. Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia.

Maria Elena Maldonado-Celis, Grupo de Investigación Impacto de los Componentes Alimentarios en la Salud, Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín, Colombia.

4. Grupo de Investigación Impacto de los Componentes Alimentarios en la Salud, Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín, Colombia.

Referencias bibliográficas

International Agency for Research on Cancer. Population fact sheets. Cancer Today [Internet] [cited 14 Oct 2022]. Available from: https://gco.iarc.fr/today/fact-sheets-populations

World Cancer Research Fund/American Institute for Cancer Research. Diet, nutrition, physical activity and colorectal cancer. Revised 2018 [Internet]. Available from: https://www.wcrf.org/wp-content/uploads/2021/02/Colorectal-cancer-report.pdf

Fischer J, Walker LC, Robinson BA, Frizelle FA, Church JM, Eglinton TW. Clinical implications of the genetics of sporadic colorectal cancer. ANZ J Surg. 2019;89(10):1224-9. https://doi.org/10.1111/ans.15074

Lee RM, Cardona K, Russell MC. Historical perspective: Two decades of progress in treating metastatic colorectal cancer. J Surg Oncol. 2019;119(5):549-63. https://doi.org/10.1002/jso.25431

Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 2019;125(23):4139-47. https://doi.org/10.1002/cncr.32163

Advani S, Kopetz S. Ongoing and future directions in the management of metastatic colorectal cancer: update on clinical trials. J Surg Oncol. 2019;119(5):642-52. https://doi.org/10.1002/jso.25441

Juan TK, Liu KC, Kuo CL, Yang MD, Chu YL, Yang JL, et al. Tetrandrine suppresses adhesion, migration and invasion of human colon cancer SW620 cells via inhibition of nuclear factor-κB, matrix metalloproteinase-2 and matrix metalloproteinase-9 signaling pathways. Oncol Lett. 2018;15(5):7716-24. https://doi.org/10.3892/ol.2018.8286

Mustafa S, Koran S, AlOmair L. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: a review. Front Mol Biosci. 2022;9:896099. https://doi.org/10.3389/fmolb.2022.896099

Alfaro Alfaro ÁE, Murillo Castillo B, Cordero García E, Tascón J, Morales AI. Colon cancer pharmacogenetics: a narrative review. Pharmacy (Basel). 2022;10(4):95. https://doi.org/10.3390/pharmacy10040095

Sara JD, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1-13. https://doi.org/10.1177/1758835918780140

El Chediak A, Haydar AA, Hakim A, Massih SA, Hilal L, Mukherji D, et al. Increase in spleen volume as a predictor of oxaliplatin toxicity. Ther Clin Risk Manag. 2018;14:653-7. https://doi.org/10.2147/TCRM.S150968

Arshad U, Ploylearmsaeng SA, Karlsson MO, Doroshyenko O, Langer D, Schömig E, et al. Prediction of exposure-driven myelotoxicity of continuous infusion 5-fluorouracil by a semi-physiological pharmacokinetic-pharmacodynamic model in gastrointestinal cancer patients. Cancer Chemother Pharmacol. 2020;85(4):711-22. https://doi.org/10.1007/s00280-019-04028-5

Kang L, Tian Y, Xu S, Chen H. Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J Neurol. 2021;268(9):3269-82. https://doi.org/10.1007/s00415-020-09942-w

Bailly C. Irinotecan: 25 years of cancer treatment. Pharmacol Res. 2019;148:104398. https://doi.org/10.1016/j.phrs.2019.104398

Lepore Signorile M, Grossi V, Fasano C, Simone C. Colorectal cancer chemoprevention: a dream coming true? Int J Mol Sci. 2023;24(8):7597. https://doi.org/10.3390/ijms24087597

Boivin D, Blanchette M, Barrette S, Moghrabi A, Béliveau R. Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFKappaB by edible berry juice. Anticancer Res. 2007;27(2): 937-48. PMID: 17465224

Vu KD, Carlettini H, Bouvet J, Cote J, Doyon G, Sylvain JF, et al. Effect of different cranberry extracts and juices during cranberry juice processing on the antiproliferative activity against two colon cancer cell lines. Food Chem. 2012;132(2):959-67. https://doi.org/10.1016/j.foodchem.2011.11.078

Seeram NP, Adams LS, Hardy ML, Heber D. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem. 2004;52(9): 2512-7. https://doi.org/10.1021/jf0352778

Borowiec K, Szwajgier D, Olejnik A, Kowalska K, Targonski Z. Effects of a bilberry preparation on selected cell lines of the digestive system. Czech J Food Sci. 2016;34(4):300-5. https://doi.org/10.17221/375/2015-CJFS

Vilkickyte G, Raudone L, Petrikaite V. Phenolic fractions from Vaccinium vitis-idaea L. and their antioxidant and anticancer activities assessment. Antioxidants (Basel). 2020;9(12):1261. https://doi.org/10.3390/antiox9121261

Maldonado-Celis ME, Arango-Varela SS, Rojano BA. Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. against colon cancer cell lines. Rev Cubana Plant Med. 2014;19(2):172-84. Available from: http://scielo.sld.cu/pdf/pla/v19n2/pla06214.pdf

Franco Tobón YN, Rojano BA, Alzate Arbeláez AF, Morales Saavedra DM, Maldonado Celis ME. Efecto del tiempo de almacenamiento sobre las características fisicoquímicas, antioxidantes y antiproliferativas de néctar de agraz (Vaccinium meridionale Swartz). Arch Lat Nutr. 2016;66(4):261-71. Available from: Available from: https://www.alanrevista.org/ediciones/2016/4/art-1/

Arango-Varela SS, Torres-Camargo D, Reyes-Dieck C, Zapata-Londoño MB, Maldonado-Celis ME. Aqueous extract of Andean berry induces apoptosis in human colon cancer cells without mitochondrial damage. J Berry Res. 2021;11(3):377-93. https://doi.org/10.3233/JBR-200684

Buch K, Peters T, Nawroth T, Sänger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay: a comparative study. Radiat Oncol. 2012;7:1. https://doi.org/10.1186/1748-717X-7-1

Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 2018;144:582-94. https://doi.org/10.1016/j.ejmech.2017.12.039

Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, et al. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem. 2006;54(25):9329-39. https://doi.org/10.1021/jf061750g

Tolba MF, Abdel-Rahman SZ. Pterostilbine, an active component of blueberries, sensitizes colon cancer cells to 5-fluorouracil cytotoxicity. Sci Rep. 2015;5:15239. https://doi.org/10.1038/srep15239

Li X, Chen L, Gao Y, Zhang Q, Chang AK, Yang Z, et al. Black raspberry anthocyanins increased the antiproliferative effects of 5-Fluorouracil and Celecoxib in colorectal cancer cells and mouse model. J Funct Foods. 2021;87(11):104801. https://doi.org/10.1016/j.jff.2021.104801

Behrendt I, Röder I, Will F, Mostafa H, Gonzalez-Dominguez R, Meroño T, et al. Influence of plasma-isolated anthocyanins and their metabolites on cancer cell migration (ht-29 and caco-2) in vitro: results of the attach study. Antioxidants (Basel). 2022;11(7):1341. https://doi.org/10.3390/antiox11071341

Brown E.M, Nitecki S, Pereira-Caro G, McDougall GJ, Stewart D, Rowland I, et al. Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: Potential impact on colonic health. Biofactors. 2014;40(6):611-23. https://doi.org/10.1002/biof.1173

Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, et al. Chemopreventive and therapeutic effects of edible berries: a focus on colon cancer prevention and treatment. Molecules. 2016;21(2):169. https://doi.org/10.3390/molecules21020169

Kristo AS, Klimis-Zacas D, Sikalidis AK. Protective role of dietary berries in cancer. Antioxidants (Basel). 2016;5(4):37. https://doi.org/10.3390/antiox5040037

Cómo citar

[1]
Zapata Londoño, M.B. et al. 2023. Aqueous extract of Andean berry (Vaccinium meridionale Swartz) promotes antiproliferative effect of 5-fluorouracil and leucovorin treatment with or without oxaliplatin and inhibits metastatic potential in colon adenocarcinoma cells. Revista Colombiana de Cancerología. 27, 4 (dic. 2023), 433–442. DOI:https://doi.org/10.35509/01239015.979.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

29-12-2023

Número

Sección

Artículos de investigación/originales

Datos de los fondos

Crossref Cited-by logo