Metástasis óseas: Avances en el entendimiento y actualización del manejo farmacológico

Autores/as

DOI:

https://doi.org/10.35509/01239015.944

Palabras clave:

neoplasias óseas, metástasis de la neoplasia, fracturas espontáneas, antineoplásicos, conservadores de la densidad ósea

Resumen

El hueso es uno de los sitios de metástasis más comunes. Estudios post mortem muestran enfermedad metastásica ósea (EMO) detectable en la mayoría de los pacientes que mueren por cáncer. La EMO implica un aumento de la morbimortalidad de los pacientes con cáncer (especialmente para aquellos cánceres con mayor sobrevida, como los de mama y próstata) y exige recursos de salud considerables para su tratamiento. Estudios recientes demuestran avances significativos en el entendimiento de la fisiopatología y del microambiente de la entidad; igualmente, se han encontrado nuevos blancos moleculares terapéuticos que favorecen positivamente el pronóstico de los pacientes. Los nuevos esfuerzos están encaminados a la predicción y prevención de los eventos esqueléticos asociados al cáncer. En este artículo se presenta una revisión de la evidencia actual en cuanto a la fisiopatología y tratamiento de la enfermedad metastásica ósea.

Biografía del autor/a

Camilo Soto-Montoya, Unidad Funcional Ortopedia, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

1. Unidad Funcional Ortopedia, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

Luis Carlos Gómez-Mier, Unidad Funcional Ortopedia, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

1. Unidad Funcional Ortopedia, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

Andrea Franco-Betancur, Fellow, Posgrado Médico-Quirúrgico de Ortopedia Oncológica, Convenio Universidad Militar Nueva Granada - Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

2. Fellow, Posgrado Médico-Quirúrgico de Ortopedia Oncológica, Convenio Universidad Militar Nueva Granada - Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

Sergio Andrés Arroyave-Rivera, Fellow, Posgrado Médico-Quirúrgico de Ortopedia Oncológica, Convenio Universidad Militar Nueva Granada - Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

2. Fellow, Posgrado Médico-Quirúrgico de Ortopedia Oncológica, Convenio Universidad Militar Nueva Granada - Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

Referencias bibliográficas

Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 2005;328(3):679-87. https://doi.org/10.1016/j.bbrc.2004.11.070

Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006 Oct 15; 12(20 Pt 2):6243s-6249s. https://doi.org/10.1158/1078-0432.ccr-06-0931

Gerratana L, Fanotto V, Bonotto M, Bolzonello S, Minisini AM, Fasola G, et al. Pattern of metastasis and outcome in patients with breast cancer. Clin Exp Metastasis. 2015;32(2):125-33. https://doi.org/10.1007/s10585-015-9697-2

Niederhuber JE, editor. Abeloff’s clinical oncology. Sixth ed. Elsevier [internet]; 2020 [citado: 2022 oct. 10]. Disponible en: https://www.elsevier.ca/ca/product.jsp?isbn=9780323568159

Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411-25. https://doi.org/10.1038/nrc3055

Sternberg CN, Baskin-Bey ES, Watson M, Worsfold A, Rider A, Tombal B. Treatment patterns and characteristics of European patients with castration-resistant prostate cancer. BMC Urol. 2013;13(1):1-7. https://doi.org/10.1186/1471-2490-13-58

Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165-76. https://doi.org/10.1053/ctrv.2000.0210

Hoffmann NE, Gillett MD, Cheville JC, Lohse CM, Leibovich BC, Blute ML. Differences in organ system of distant metastasis by renal cell carcinoma subtype. J Urol. 2008;179(2):474-7. https://doi.org/10.1016/j.juro.2007.09.036

Huang J-F, Shen J, Li X, Rengan R, Silvestris N, Wang M, et al. Incidence of patients with bone metastases at diagnosis of solid tumors in adults: a large population-based study. Ann Transl Med. 2020;8(7):482. https://doi.org/10.21037/atm.2020.03.55

Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg. 1940;112(1):138-49. https://doi.org/10.1097%2F00000658-194007000-00016

Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM. Cancer metastases to bone: Concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel). 2018;10(6):182. https://doi.org/10.3390/cancers10060182

Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 2008;27(1):41-55. https://doi.org/10.1007/s10555-007-9109-4

Mastro AM, Gay CV, Welch DR, Donahue HJ, Jewell J, Mercer R, et al. Breast cancer cells induce osteoblast apoptosis: a possible contributor to bone degradation. J Cell Biochem. 2004;91(2):265-76. https://doi.org/10.1002/jcb.10746

Yoneda T. Mechanisms of preferential metastasis of breast cancer to bone (Review). Int J Oncol. 1996;9(1):103-9. https://doi.org/10.3892/ijo.9.1.103

Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys. 2014;561:3-12. https://doi.org/10.1016/j.abb.2014.05.003

Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229-38. https://doi.org/10.1002/jbmr.320

D’Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol. 2019;15:004. https://doi.org/10.1016/j.jbo.2018.10.004

Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J. 2018;8(1):7. https://doi.org/10.1038/s41408-017-0037-4

D’Oronzo S, Brown J, Coleman R. The role of biomarkers in the management of bone-homing malignancies. J Bone Oncol. 2017;9:1-9. https://doi.org/10.1016/j.jbo.2017.09.001

Mullender MG, Van Der Meer DD, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone. 1996;18(2):109-13. https://doi.org/10.1016/8756-3282(95)00444-0

Renema N, Navet B, Heymann MF, Lezot F, Heymann D. RANK-RANKL signalling in cancer. Biosci Rep. 2016;36(4):e00366. https://doi.org/10.1042/bsr20160150

Paget S. The distribution of secondary growths in cancer of the breast. Lancet.;133(3421):571-3. https://doi.org/10.1016/S0140-6736(00)49915-0

Lee JH, Kim HN, Kim KO, Jin WJ, Lee S, Kim HH, et al. CXCL10 promotes osteolytic bone metastasis by enhancing cancer outgrowth and osteoclastogenesis. Cancer Res. 2012;72(13):3175-86. https://doi.org/10.1158/0008-5472.can-12-0481

Ha HK, Lee W, Park HJ, Lee SD, Lee JZ, Chung MK. Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer. Mol Med Rep. 2011;4(3):419-24. https://doi.org/10.3892/mmr.2011.446

Kan C, Vargas G, Le Pape F, Clézardin P. Cancer cell colonisation in the bone microenvironment. Int J Mol Sci. 2016;17(10):1674. https://doi.org/10.3390%2Fijms17101674

Saidak Z, Boudot C, Abdoune R, Petit L, Brazier M, Mentaverri R, et al. Extracellular calcium promotes the migration of breast cancer cells through the activation of the calcium sensing receptor. Exp Cell Res. 2009;315(12):2072-80. https://doi.org/10.1016/j.yexcr.2009.03.003

Phadke PA, Mercer RR, Harms JF, Jia Y, Frost AR, Jewell JL, et al. Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res. 2006;12(5):1431-40. https://doi.org/10.1158/1078-0432.ccr-05-1806

Hiraga T. Hypoxic microenvironment and metastatic bone disease. Int J Mol Sci. 2018;19(11):3523. https://doi.org/10.3390/ijms19113523

Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9(8):1221-35. https://doi.org/10.1089/ars.2007.1628

Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol. 2003;196(1):2-8. https://doi.org/10.1002/jcp.10321

LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol. 2016;18(4):356-65. https://doi.org/10.1038/ncb3330

Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889-96. https://doi.org/10.1038/ni.1937

Ihle CL, Provera MD, Straign DM, Smith EE, Edgerton SM, Van Bokhoven A, et al. Distinct tumor microenvironments of lytic and blastic bone metastases in prostate cancer patients. J Immunother Cancer. 2019;7(1):1-9. https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0753-3

Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9-22. https://doi.org/10.1038/nrc3183

Schito L, Semenza GL. Hypoxia-inducible factors: Master regulators of cancer progression. Trends Can. 2016;2(12):758-70. https://doi.org/10.1016/j.trecan.2016.10.016

Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124-34. https://doi.org/10.1038/nm.4409

Hill ME, Richards MA, Gregory WM, Smith P, Rubens RD. Spinal cord compression in breast cancer: a review of 70 cases. Br J Cancer. 1993;68(5):969-73. https://doi.org/10.1038/bjc.1993.463

Bundred NJ, Morrison JM, Ratcliffe WA, Ratcliffe JG, Warwick J, Walker RA. Parathyroid hormone related protein and skeletal morbidity in breast cancer. Eur J Cancer. 1992;28(2-3):690-2. https://doi.org/10.1016/s0959-8049(05)80127-3

Coleman RE, Major P, Lipton A, Brown JE, Lee KA, Smith M, et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol. 2005;23(22):4925-35. https://doi.org/10.1200/jco.2005.06.091

Brown JE, Cook RJ, Major P, Lipton A, Saad F, Smith M, et al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst. 2005;97(1):59-69. https://doi.org/10.1093/jnci/dji002

Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110(8):1860-7. https://doi.org/10.1002/cncr.22991

Mirels H. Metastatic disease in long bones: A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res. 2003;415(Suppl):S4-S13. https://doi.org/10.1097/01.blo.0000093045.56370.dd

Damron TA, Nazarian A, Entezari V, Brown C, Grant W, Calderón N, et al. CT-based structural rigidity analysis is more accurate than Mirels scoring for fracture prediction in metastatic femoral lesions. Clin Orthop Relat Res. 2016;474(3):643-51. https://doi.org/10.1007/s11999-015-4453-0

Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34-41. https://doi.org/10.1016/j.bone.2010.11.008

Paterson AHG, Anderson SJ, Lembersky BC, Fehrenbacher L, Falkson CI, King KM, et al. Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and Bowel Project protocol B-34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol. 2012;13(7):734. https://doi.org/10.1016/s1470-2045(12)70226-7

Brufsky AM, Harker WG, Beck JT, Bosserman L, Vogel C, Seidler C, et al. Final 5-year results of Z-FAST trial: adjuvant zoledronic acid maintains bone mass in postmenopausal breast cancer patients receiving letrozole. Cancer. 2012;118(5):1192-201. https://doi.org/10.1002/cncr.26313

Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer. 2003;98(8):1735-44. https://doi.org/10.1002/cncr.11701

Coleman R, Cameron D, Dodwell D, Bell R, Wilson C, Rathbone E, et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol. 2014;15(9):997-1006. https://doi.org/10.1016/s1470-2045(14)70302-x

Gnant M, Mlineritsch B, Stoeger H, Luschin-Ebengreuth G, Knauer M, Moik M, et al. Zoledronic acid combined with adjuvant endocrine therapy of tamoxifen versus anastrozol plus ovarian function suppression in premenopausal early breast cancer: final analysis of the Austrian Breast and Colorectal Cancer Study Group Trial 12. Ann Oncol Off J Eur Soc Med Oncol. 2015;26(2):313-20. https://doi.org/10.1093/annonc/mdu544

Rodrigues P, Hering FO, Meller A. Adjuvant effect of IV clodronate on the delay of bone metastasis in high-risk prostate cancer patients: A prospective study. Cancer Res Treat. 2011;43(4):231. https://doi.org/10.4143%2Fcrt.2011.43.4.231

Santini D, Zoccoli A, Gregorj C, Di Cerbo M, Iuliani M, Pantano F, et al. Zoledronic acid induces a significant decrease of circulating endothelial cells and circulating endothelial precursor cells in the early prostate cancer neoadjuvant setting. Oncology. 2013;85(6):342-7. https://doi.org/10.1159/000347226

Coleman R, Body JJ, Aapro M, Hadji P, Herrstedt J. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol Off J Eur Soc Med Oncol. 2014;25(Suppl 3):124-37. https://doi.org/10.1093/annonc/mdu103

Reyes C, Hitz M, Prieto-Alhambra D, Abrahamsen B. Risks and benefits of bisphosphonate therapies. J Cell Biochem. 2016;117(1):20-8. https://doi.org/10.1002/jcb.25266

Hutton B, Addison CL, Campbell K, Fergusson D, Mazarello S, Clemons M. A systematic review of dosing frequency with bone-targeted agents for patients with bone metastases from breast cancer. J Bone Oncol. 2013;2(3):123-31. https://doi.org/10.1016/j.jbo.2013.05.001

Sousa S, Clézardin P. Bone-targeted therapies in cancer-induced bone disease. Calcif Tissue Int. 2018;102(2):227-50. https://doi.org/10.1007/s00223-017-0353-5

Lipton A, Fizazi K, Stopeck AT, Henry DH, Smith MR, Shore N, et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur J Cancer. 2016;53:75-83. https://doi.org/10.1016/j.ejca.2015.09.011

Fizazi K, Lipton A, Mariette X, Body JJ, Rahim Y, Gralow JR, et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 2009;27(10):1564-71. https://doi.org/10.1200/jco.2008.19.2146

Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12(4):1221-8. https://doi.org/10.1158/1078-0432.ccr-05-1933

Ford JA, Jones R, Elders A, Mulatero C, Royle P, Sharma P, et al. Denosumab for treatment of bone metastases secondary to solid tumours: systematic review and network meta-analysis. Eur J Cancer. 2013;49(2):416-30. https://doi.org/10.1016/j.ejca.2012.07.016

Mogi M, Kondo A. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells. Biochem Biophys Res Commun. 2009;384(1):82-6. https://doi.org/10.1016/j.bbrc.2009.04.084

Hortobagyi GN. Everolimus plus exemestane for the treatment of advanced breast cancer: a review of subanalyses from BOLERO-2. Neoplasia. 2015;17(3):279-88. https://doi.org/10.1016/j.neo.2015.01.005

Günther A, Baumann P, Burger R, Kellner C, Klapper W, Schmidmaier R, et al. Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study. Haematologica. 2015;100(4):541-47. https://doi.org/10.3324%2Fhaematol.2014.116269

Accardi F, Toscani D, Bolzoni M, Dalla Palma B, Aversa F, Giuliani N. Mechanism of action of bortezomib and the new proteasome inhibitors on myeloma cells and the bone microenvironment: Impact on myeloma-induced alterations of bone remodeling. Biomed Res Int. 2015;2015:172458. https://doi.org/10.1155/2015/172458

Rizzo S, Galvano A, Pantano F, Iuliani M, Vincenzi B, Passiglia F, et al. The effects of enzalutamide and abiraterone on skeletal related events and bone radiological progression free survival in castration resistant prostate cancer patients: An indirect comparison of randomized controlled trials. Crit Rev Oncol Hematol. 2017;120:227-33. https://doi.org/10.1016/j.critrevonc.2017.09.008

Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol. 2016;77(3):441-57. https://doi.org/10.1007/s00280-015-2920-7

Turner PG, O’Sullivan JM. 223Ra and other bone-targeting radiopharmaceuticals-the translation of radiation biology into clinical practice. Br J Radiol. 2015;88(1050): 20140752. https://doi.org/10.1259/bjr.20140752

Suominen MI, Rissanen JP, Käkönen R, Fagerlund KM, Alhoniemi E, Mumberg D, et al. Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone metastasis. J Natl Cancer Inst. 2013;105(12):908-16. https://doi.org/10.1093/jnci/djt116

Ben Gal O, Soh TCF, Vaughan S, Jayasanker V, Mahendra A, Gupta S. The prediction of survival after surgical management of bone metastases of the extremities. A comparison of prognostic models. Curr Oncol. 2022;29(7):4703-16. https://doi.org/10.3390/curroncol29070373

Errani C, Mavrogenis AF, Cevolani L, Spinelli S, Piccioli A, Maccauro G, et al. Treatment for long bone metastases based on a systematic literature review. undefined. Eur J Orthop Surg Traumatol. 2016;27(2):205-11. https://doi.org/10.1007/s00590-016-1857-9

Forsberg JA, Eberhardt J, Boland PJ, Wedin R, Healey JH. Estimating survival in patients with operable skeletal metastases: an application of a bayesian belief network. PLoS One. 2011;6(5):e19956. https://doi.org/10.1371/journal.pone.0019956

Saravana-Bawan S, David E, Sahgal A, Chow E. Palliation of bone metastases-exploring options beyond radiotherapy. Ann Palliat Med. 2019;8(2):168-77. https://doi.org/10.21037/apm.2018.12.04

Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55(1):61-6. https://doi.org/10.1038/bjc.1987.13

Plunkett TA, Smith P, Rubens RD. Risk of complications from bone metastases in breast cancer. implications for management. Eur J Cancer. 2000;36(4):476-82. https://doi.org/10.1016/s0959-8049(99)00331-7

Sabbatini P, Larson SM, Kremer A, Zhang ZF, Sun M, Yeung H, et al. Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol. 1999;17(3):948-57. https://doi.org/10.1200/jco.1999.17.3.948

Bataille R, Boccadoro M, Klein B, Durie B, Pileri A. C-reactive protein and beta-2 microglobulin produce a simple and powerful myeloma staging system. Blood. 1992;80(3):733-7. https://doi.org/10.1182/blood.V80.3.733.733

Cómo citar

[1]
Soto Montoya, C. et al. 2023. Metástasis óseas: Avances en el entendimiento y actualización del manejo farmacológico. Revista Colombiana de Cancerología. 27, (jul. 2023), 301–312. DOI:https://doi.org/10.35509/01239015.944.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

27-07-2023
Crossref Cited-by logo