Bioimpedancia eléctrica como una alternativa para el estudio del cáncer colorrectal (CCR) basada en la teoría de cancerización de campo

Autores/as

  • Victoria Eugenia Aguirre-Cardona Estudiante del Doctorado en Ciencias Biomédicas, Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Universidad de Caldas, Manizales, Colombia. https://orcid.org/0000-0001-8837-1268
  • Carlos Augusto González-Correa Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales, Colombia. https://orcid.org/0000-0002-0124-5072
  • Samuel Alberto Jaimes-Morales Estudiante del Doctorado en Ciencias Biomédicas, Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Universidad de Caldas, Manizales, Colombia. https://orcid.org/0000-0003-3471-0281

DOI:

https://doi.org/10.35509/01239015.920

Palabras clave:

neoplasias colorrectales, composición corporal, carcinogénesis, impedancia eléctrica

Resumen

Se presentan la bioimpedancia eléctrica (BIE) y la cancerización de campo como posibles alternativas para el estudio del cáncer colorrectal (CCR), debido al gran impacto que tiene esta enfermedad, tanto en Colombia como en el mundo. La BIE comprende algunas técnicas de bajo riesgo y bajo costo que han sido aplicadas para la detección de algunos tipos de cáncer, mostrando además un gran potencial para el estudio del CCR. Por otra parte, la cancerización de campo se relaciona con cambios ultraestructurales que ocurren antes del desarrollo de un tumor, en zonas extendidas de un tejido relacionado con alteraciones epigenéticas, lo cual podría ser aplicado para la detección temprana, como lo han demostrado algunas investigaciones mediante técnicas ópticas. Además, algunos estudios preliminares han mostrado resultados promisorios de la aplicación de la BIE, bajo el concepto de cancerización de campo, para la detección del CCR mediante mediciones en tejido rectal.

Biografía del autor/a

Victoria Eugenia Aguirre-Cardona, Estudiante del Doctorado en Ciencias Biomédicas, Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Universidad de Caldas, Manizales, Colombia.

1. Estudiante del Doctorado en Ciencias Biomédicas, Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Universidad de Caldas, Manizales, Colombia.

Carlos Augusto González-Correa, Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales, Colombia.

2. Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales, Colombia.

Samuel Alberto Jaimes-Morales, Estudiante del Doctorado en Ciencias Biomédicas, Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Universidad de Caldas, Manizales, Colombia.

1. Estudiante del Doctorado en Ciencias Biomédicas, Grupo de Investigación en Bioimpedancia Eléctrica (GruBIE), Universidad de Caldas, Manizales, Colombia.

Referencias bibliográficas

Global Cancer Observatory (GLOBOCAN). Cancer Today [internet]. [citado: 2023 mar 6]. Disponible en: https://gco.iarc.fr/today/home

Global Cancer Observatory (GLOBOCAN). Cancer Over Time [internet]. [citado: 2023 mar 6]. Disponible en: https://gco.iarc.fr/overtime/en/dataviz/bars?sexes=1_2&sort_by=value2&mode=cancer

Ministerio de Salud y Protección Social, Instituto Nacional de Cancerología. Guía de práctica clínica (GPC) para la detección temprana, diagnóstico, tratamiento, seguimiento y rehabilitación de pacientes con diagnóstico de cáncer de colon y recto [internet]. 2013 [citado: 2023 mar 6]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IETS/gpc-completa-ca-colon.pdf

Ministerio de Salud y Protección Social, Instituto Nacional de Cancerología. Plan Decenal para el Control del Cáncer en Colombia, 2012-2021 [internet]. 2012 [citado: 2023 mar 6]. Disponible en: https://www.minsalud.gov.co/Documents/Plan-Decenal-Cancer/PlanDecenal_ControlCancer_2012-2021.pdf

González-Correa CA. Clinical applications of electrical impedance spectroscopy. En: Simini F, Bertemes-Filho P, editores. Bioimpedance in biomedical applications and research. Cham: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-74388-2_10

Park SK, Song CS, Yang HJ, Jung YS, Choi KY, Koo DH, et al. Field cancerization in sporadic colon cancer. Gut Liver. 2016;10(5):773-80. https://doi.org/10.5009/gnl15334

Slaughter DP, Southwick HW, Smejkal W. “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer. 1953;6(5):963-8. https://doi.org/10.1002/1097-0142(195309)6:5%3C963::AID-CNCR2820060515%3E3.0.CO;2-Q

Holm K. Genetic and epigenetic characterisation of breast tumours [internet] [Doctoral Thesis (compilation), Breastcancer-genetics]. [Division of Oncology, Department of Clinical Sciences, Lund]; 2011 [citado: 2023 mar 6]. Disponible en: https://lup.lub.lu.se/search/ws/files/4272671/1938075.pdf

Curtius K, Wright NA, Graham TA. An evolutionary perspective on field cancerization. Nature Reviews Cancer. 2018;18(1):19-33. https://doi.org/10.1038/nrc.2017.102

Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Research. 2003;63(8):1727-30. PMID: 12702551

Mulett-Vásquez E, González-Correa CA, Miranda-Mercado DA, Osorio-Chica M, Dussan-Lubert C. In vivo electrical-impedance spectroscopy (EIS) readings in the human rectum. En: Simini F, Bertemes-Filho P, editores. II Latin American Conference on Bioimpedance. Singapore: Springer; 2016. p. 68-71. (IFMBE Proceedings). https://doi.org/10.1007/978-981-287-928-8_18

González-Correa CA, Mulett-Vásquez E, Osorio-Chica M, Dussán-Lubert C, Miranda D. Rectal electrical bio-impedance spectroscopy in the detection of colorectal anomalies associated with cancer. J Physics: Conference Series. 2019;1272(1):012012. https://doi.org/10.1088/1742-6596/1272/1/012012

Clinton SK, Giovannucci EL, Hursting SD. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on diet, nutrition, physical activity, and cancer: Impact and future directions. J Nutrit. 2020;150(4):663-71. https://doi.org/10.1093/jn/nxz268

Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel). 2013;5(2):676-713. https://doi.org/10.3390/cancers5020676

Gerstung M, Jolly C, Leshchiner I, Dentro S, González S, Rosebrock D, et al. The evolutionary history of 2,658 cancers. Nature. 2020;578:122-8. https://doi.org/10.1038/s41586-019-1907-7

Issa IA, Noureddine M. Colorectal cancer screening: An updated review of the available options. World J Gastroenterol. 2017;23:5086. https://doi.org/10.3748/wjg.v23.i28.5086

Ladabaum U, Dominitz JA, Kahi C, Schoen RE. Strategies for colorectal cancer screening. Gastroenterology. 2020;158(2):418-32. https://doi.org/10.1053/j.gastro.2019.06.043

Damania D, Roy HK, Subramanian H, Weinberg DS, Rex DK, Goldberg MJ, et al. Nanocytology of rectal colonocytes to assess risk of colon cancer based on field cancerization. Cancer Research. 2012;72(11):2720-7. https://doi.org/10.1158/0008-5472.CAN-11-3807

Berg M, Søreide K. genetic and epigenetic traits as biomarkers in colorectal cancer. Internat J Molecular Sci. 2011;12(12):9426-39. https://doi.org/10.3390/ijms12129426

Gadaleta E, Thorn GJ, Ross‐Adams H, Jones LJ, Chelala C. Field cancerization in breast cancer. J Pathol. 2022;257(4):561-74. https://doi.org/10.1002/path.5902

Bernstein C, Bernstein H, Payne C, Dvorak K GH. Field defects in progression to gastrointestinal tract cancers. Pierre Bourdieu: Key Concepts. 2010;260:67-82. https://doi.org/10.1016/j.canlet.2007.11.027

Subramanian H, Pradhan P, Liu Y, Capoglu IR, Li X, Rogers JD, et al. Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells. Proceed Nat Acad Sci. 2008;105(51):20118-23. https://doi.org/10.1073/pnas.0804723105

Gladstein S, Damania D, Almassalha LM, Smith LT, Gupta V, Subramanian H, et al. Correlating colorectal cancer risk with field carcinogenesis progression using partial wave spectroscopic microscopy. Cancer Med. 2018;7(5):2109-20. https://doi.org/10.1002/cam4.1357

Roy H, Turzhitsky V, Kim Y, Goldberg M, Watson P, Rogers J, et al. Association between rectal optical signatures and colonic neoplasia: Potential applications for screening. Cancer Res. 2009;69:4476-83. https://doi.org/10.1158/0008-5472.CAN-08-4780

Mutyal N, Radosevich A, Tiwari A, Stypula-Cyrus Y, Wali R, Kunte D, et al. Biological mechanisms underlying structural changes induced by colorectal field carcinogenesis measured with low-coherence enhanced backscattering (LEBS) spectroscopy. PloS one. 2013;8:e57206. https://doi.org/10.1371/journal.pone.0057206

Roy HK, Gomes AJ, Ruderman S, Bianchi LK, Goldberg MJ, Stoyneva V, et al. Optical measurement of rectal microvasculature as an adjunct to flexible sigmoidosocopy: Gender-specific implications. Cancer Prev Res (Phila). 2010;3(7):844-51. https://doi.org/10.1158/1940-6207.CAPR-09-0254

Gomes AJ, Ruderman S, DelaCruz M, Wali RK, Roy HK, Backman V. In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis. J Biomed Opt. 2012;17(4):047005. https://doi.org/10.1117/1.JBO.17.4.047005

Mirnezami R, Spagou K, Vorkas PA, Lewis MR, Kinross J, Want E, et al. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Molecular Oncol. 2014;8(1):39-49. https://doi.org/10.1016/j.molonc.2013.08.010

Yi J, Radosevich A, Stypula-Cyrus Y, Mutyal N, Azarin S, Siegler E, et al. Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography. J Biomed Optics. 2014;19:36013. https://doi.org/10.1117/1.JBO.19.3.036013

Bertemes-Filho P. Electrical impedance spectroscopy. En: Simini F, Bertemes-Filho P, editores. Bioimpedance in biomedical applications and research. Cham: Springer International Publishing; 2018 [internet] [citado: 2022 oct 4]. p. 5-27. https://doi.org/10.1007/978-3-319-74388-2_2

González-Correa CH. Body composition by bioelectrical impedance analysis. En: Bioimpedance in biomedical applications and research. [Internet]. Cham: Springer International Publishing; 2018 [internet] [citado: 2023 mar 6]. p. 219-41. https://doi.org/10.1007/978-3-319-74388-2_11

Ræder H, Kværner AS, Henriksen C, Florholmen G, Henriksen HB, Bøhn SK, et al. Validity of bioelectrical impedance analysis in estimation of fat-free mass in colorectal cancer patients. Clin Nutrit. 2018;37(1):292-300. https://doi.org/10.1016/j.clnu.2016.12.028

Bärebring L, Kværner AS, Skotnes M, Henriksen HB, Skjetne AJ, Henriksen C, et al. Use of bioelectrical impedance analysis to monitor changes in fat-free mass during recovery from colorectal cancer– a validation study. Clinical Nutrition ESPEN. 2020;40:201-7. https://doi.org/10.1016/j.clnesp.2020.09.021

MacInnis RJ, English DR, Hopper JL, Haydon AM, Gertig DM, Giles GG. Body size and composition and colon cancer risk in men. Cancer Epidemiol Biomarkers Prev. 2004;13(4):553-9. PMID: 15066919

Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, et al. Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in stage IIIB and IV non-small cell lung cancer. BMC Cancer. 2009;9:1634-8. https://doi.org/10.1186/1471-2407-9-37

Barao K, Abe Vicente Cavagnari M, Silva Fucuta P, Manoukian Forones N. Association between nutrition status and survival in elderly patients with colorectal cancer. Nutrit Clin Pract. 2017;32(5):658-63. https://doi.org/10.1177/0884533617706894

Gupta D, Lammersfeld CA, Burrows JL, Dahlk SL, Vashi PG, Grutsch JF, et al. Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in advanced colorectal cancer. Am J Clin Nutrit. 2004;80(6):1634-8. https://doi.org/10.1093/ajcn/80.6.1634

Nishiyama VKG, Albertini SM, Moraes CMZG de, Godoy MF de, Netinho JG. Malnutrition and clinical outcomes in surgical patients with colorectal disease. Arch Gastroenterol. 2018;55(4):397-402. https://doi.org/10.1590/S0004-2803.201800000-85

Souza NC, Avesani CM, Prado CM, Martucci RB, Rodrigues VD, de Pinho NB, et al. Phase angle as a marker for muscle abnormalities and function in patients with colorectal cancer. Clin Nutrit. 2021;40(7):4799-806. https://doi.org/10.1016/j.clnu.2021.06.013

Han S, Bae JH, Lee CS, Al‐Sawat A, Park SJ, Lee HJ, et al. Serial measurements of body composition using bioelectrical impedance and clinical usefulness of phase angle in colorectal cancer. Nutr Clin Pract. 2022;37(1):153-66.https://doi.org/10.1002/ncp.10754

Davies RJ, Joseph R, Kaplan D, Juncosa RD, Pempinello C, Asbun H, et al. Epithelial impedance analysis in experimentally induced colon cancer. Biophysical J. 1987;52(5):783-90. https://doi.org/10.1016/S0006-3495(87)83272-1

Soler AP. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 1999;20(8):1425-32. https://doi.org/10.1093/carcin/20.8.1425

Sabuncu AC, Shen J, Zaki MH, Beskok A. Changes in the dielectric spectra of murine colon during neoplastic progression. Biomed Physics Engin Express. 2018;4(3):035003. https://doi.org/10.1088/2057-1976/aaad81

Payne SC, Alexandrovics J, Thomas R, Shepherd RK, Furness JB, Fallon JB. Transmural impedance detects graded changes of inflammation in experimental colitis. Royal Soc Open Sci. 2020;7(2):191819. https://doi.org/10.1098/rsos.191819

Ruiz-Vargas A, Ivorra A, Arkwright JW. Design, construction and validation of an electrical impedance probe with contact force and temperature sensors suitable for in-vivo measurements. Scientific Rep. 2018;8(1):14818. https://doi.org/10.1038/s41598-018-33221-4

Ruiz-Vargas A, Arkwright JW, Ivorra A. A portable bioimpedance measurement system based on Red Pitaya for monitoring and detecting abnormalities in the gastrointestinal tract. En: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE; 2016. p. 150-4. https://doi.org/10.1109/IECBES.2016.7843433

Nguyen KT, Kim HY, Park JO, Choi E, Kim CS. Tripolar electrode electrochemical impedance spectroscopy for endoscopic devices toward early colorectal tumor detection. ACS Sensors. 2022;7(2):632-40. https://doi.org/10.1021/acssensors.1c02571

Pathiraja A, Ziprin P, Shiraz A, Mirnezami R, Tizzard A, Brown B, et al. Detecting colorectal cancer using electrical impedance spectroscopy: An ex vivo feasibility study. Physiolog Measur. 2017;38(6):1278-88. https://doi.org/10.1088/1361-6579/aa68ce

Cómo citar

[1]
Aguirre Cardona, V.E. et al. 2023. Bioimpedancia eléctrica como una alternativa para el estudio del cáncer colorrectal (CCR) basada en la teoría de cancerización de campo. Revista Colombiana de Cancerología. 27, 3 (sep. 2023), 380–388. DOI:https://doi.org/10.35509/01239015.920.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

29-09-2023

Número

Sección

Artículos de revisión
Crossref Cited-by logo