Contribución de la vía PI3k/Akt-PTEN y sus blancos corriente abajo en iniciación y progresión de glioblastoma multiforme

Autores/as

  • Gonzalo Arboleda Instituto Nacional de Cancerología

Palabras clave:

Neoplasmas del sistema nervioso central, glioblastoma, proteinas oncogénicas virales, Fosfatidilinositoles, hexoquinasa, mTOR, telomerasa, proteina oncogénica Akt

Resumen

Los tumores malignos del sistema nervioso central constituyen un problema importante en oncología debido a que son de difícil tratamiento y tienen un alto porcentaje de resistencia a la terapia, además de que su pronóstico es muy pobre. El análisis de los cambios genéticos y moleculares asociados a la iniciación y progresión del proceso tumoral constituye una herramienta importante para establecer grupos de tratamiento específico, para reducir la incidencia de resistencia al mismo y para establecer nuevos blancos terapéuticos.
Este artículo busca analizar diversos aspectos genéticos y moleculares subyacentes a la iniciación y progresión del tumor cerebral maligno más frecuente, el glioblastoma multiforme, procesos que siguen siendo poco conocidos. El análisis se centrará en la vía de supervivencia neuronal mediada por los receptores tirosina quinasa (RTK) y sus blancos corriente abajo: PTEN, PI3K, Akt, mTOR y hexoquinasa. Poco se sabe, sin embargo, acerca de cómo cambios genéticos y moleculares en estas vías de señalización celular se interrelacionan temporal y funcionalmente para determinar la progresión maligna y la resistencia a la terapia en glioblastoma multiforme. En la actualidad se está desarrollando un estudio in vivo e in vitro utilizando especímenes quirúrgicos y líneas celulares de glioblastoma, para analizar sus cambios genéticos y moleculares asociados a la vía PI3K/Akt-PTEN, y realizar una correlación con la expresión de hexoquinasa, mTOR y telomerasa, y su importancia en cuanto a resistencia a la terapia.

Biografía del autor/a

Gonzalo Arboleda, Instituto Nacional de Cancerología

Instituto Nacional de Cancerología, E.S.E., Grupo de Investigación en Biología del Cáncer, Laboratorio de Genética, Bogotá, D.C., Colombia.

Referencias bibliográficas

Rasheed BK, Wiltshire RN, Bigner SH, Bigner DD. Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 1999;11(3):162-167.

https://doi.org/10.1097/00001622-199905000-00004

Zhu Y, Parada LF. The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002; 2(8):616-626.

https://doi.org/10.1038/nrc866

Brandes AA. State-of-the-art treatment of high-grade brain tumors. Semin Oncol 2003;30(6 Suppll9):4-9.

https://doi.org/10.1053/j.seminoncol.2003.11.028

Collins VP. Cellular mechanisms targeted during astrocytoma progression. Cancer Lett 2002;188(1- 2):1-7.

https://doi.org/10.1016/S0304-3835(02)00198-2

Andratschke N, Grosu AL, Molls M, Nieder C. Perspectives in the treatment of malignant gliomas in adults. Anticancer Res 2001;21(5):3541-3550.

Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408(6810):307-310.

https://doi.org/10.1038/35042675

Watanabe K, Sato K, Biernat W, Tachibana O, Von Ammon K, Ogata N et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 1997;3(4):523-530.

Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 1990;20-27;348(6303):747-749.

https://doi.org/10.1038/348747a0

Malkin D, Li FP, Strong LC, Fraumeni JF Jr., Nelson CE, Kim DH et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250(4985): 1233-1238.

https://doi.org/10.1126/science.1978757

Donehower LA, Harvey M, Slagle BL, McArthur Ml, Montgomery CA Jr., Butel JS et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356(6366):215-221.

https://doi.org/10.1038/356215a0

Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994;4(l):l-7.

https://doi.org/10.1016/S0960-9822(00)00002-6

Guha A, Dashner K, Black PM, Wagner JA, Stiles CD. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 1995;60(2):168-173.

https://doi.org/10.1002/ijc.2910600206

Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001 ;15(15): 1913-1925.

https://doi.org/10.1101/gad.903001

Fruttiger M, Karlsson L, Hall AC, Abramsson A, Cal ver AR, Bostrom H et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 1999; 126 (3):457-467.

Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J et al. Astrocyte- specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001;61(9):3826-3836.

Bos JL. ras oncogenes in human cancer: a review. Cancer Res 1989;49(17):4682-4689.

GuhaA, Feldkamp MM, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 1997; 15 (23):2755-2765.

https://doi.org/10.1038/sj.onc.1201455

Burns KL, Ueki K, Jhung SL, Koh J, Louis DN, Molecular genetic correlates of p i 6, cdk4, and pRb immunohistochemistry in glioblastomas. J Neuropa- thol Exp Neurol 1998;57(2): 122-130.

https://doi.org/10.1097/00005072-199802000-00003

Ichimura K, Schmidt EE, Goike HM, Collins VP. Human glioblastomas with no alterations of the CDKN2A (pl6INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 1996;13(5):1065-1072.

Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. Loss of pl6Ink4a with retention of pl9Arf predisposes mice to tumorigenesis. Nature 2001 ;413(6851):86-91.

https://doi.org/10.1038/35092592

Marino S, Vooijs M, Van der GH, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000;14(8):994-1004.

Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998;12(23):3675-3685.

https://doi.org/10.1101/gad.12.23.3675

Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol (Berl) 1997;94(4):303-309.

https://doi.org/10.1007/s004010050711

Lang FF, Miller DC, Koslow M, Newcomb EW. Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 1994;81(3):427-436.

https://doi.org/10.3171/jns.1994.81.3.0427

Fulci G, Labuhn M, Maier D, Lachat Y, Hausmann O, Hegi ME et al. p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 2000;9(33): 3816-3822.

https://doi.org/10.1038/sj.onc.1203700

Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001;2(10): 731-737.

https://doi.org/10.1038/35096061

Biernat W, Kleihues P, Yonekawa Y, Ohgaki H. Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol 1997;56(2): 180-185.

https://doi.org/10.1097/00005072-199702000-00009

Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N et al. Amplification of the epidermal- growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer 1994;56(l):72-77.

https://doi.org/10.1002/ijc.2910560114

Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000;60(5): 1383-1387.

Fults D, Pedone C. Deletion mapping of the long arm of chromosome 10 in glioblastoma multiforme. Genes Chromosomes Cancer 1993;7(3):173- 177.

https://doi.org/10.1002/gcc.2870070311

Tohma Y, Gratas C, Biernat W, Peraud A, Fukuda M, Yonekawa Y et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 1998;57(7):684-689.

https://doi.org/10.1097/00005072-199807000-00005

Morii K, Tanaka R, Onda K, Tsumanuma I, Yoshimura J. Expression of telomerase RNA, telomerase activity, and telomere length in human gliomas. Biochem Biophys Res Commun 1997;239(3):830- 834.

https://doi.org/10.1006/bbrc.1997.7562

DeMasters BK, Markham N, Lillehei KO, Shroyer KR. Differential telomerase expression in human primary intracranial tumors. Am J Clin Pathol 1997; 107(5): 548-554.

https://doi.org/10.1093/ajcp/107.5.548

Zwick E, Bange J, Ullrich A. Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med 2002;8(l):17-23.

https://doi.org/10.1016/S1471-4914(01)02217-1

Huang EJ, Reichardt LE TRK Receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003;72:609-642.

https://doi.org/10.1146/annurev.biochem.72.121801.161629

Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Cun' Opin Neurobiol 2000;10(3):381-391.

https://doi.org/10.1016/S0959-4388(00)00092-1

Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/ PKB. Exp Cell Res 1999;253(l):210-229.

https://doi.org/10.1006/excr.1999.4690

Kaplan DR, Cooper E. PI-3 kinase and IP3: partners in NT3-induced synaptic Nat Neurosci 2001;4(l):5-7.

https://doi.org/10.1038/82897

Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 1998;273(26): 16568-16575.

https://doi.org/10.1074/jbc.273.26.16568

Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001;24:677-736.

https://doi.org/10.1146/annurev.neuro.24.1.677

Holgado-Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci USA 1997; 94(23): 12419- 12424.

https://doi.org/10.1073/pnas.94.23.12419

Marte BM, Rodriguez-Viciana P, Wennstrom S, Wame PH, Downward J. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1997;7(l):63-70.

https://doi.org/10.1016/S0960-9822(06)00028-5

Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. Phospha- tidylinositol-3-OH kinase as a direct target of Ras. Nature 1994;370(6490):527-532.

https://doi.org/10.1038/370527a0

Mazzoni IE, Said FA, Aloyz R, Miller FD, Kaplan D. Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J Neurosci 1999;19(22):9716-9727.

https://doi.org/10.1523/JNEUROSCI.19-22-09716.1999

Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999; ll(2):219-225.

https://doi.org/10.1016/S0955-0674(99)80029-5

Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997; 88(4):435-437.

https://doi.org/10.1016/S0092-8674(00)81883-8

Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997 ;275(5300): 661 -665.

https://doi.org/10.1126/science.275.5300.661

Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15(23):6541 -6551.

https://doi.org/10.1002/j.1460-2075.1996.tb01045.x

Scheid MP, Marignani PA, Woodgett JR. Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 2002;22(17):6247-6260.

https://doi.org/10.1128/MCB.22.17.6247-6260.2002

Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997;7(4):261-269.

https://doi.org/10.1016/S0960-9822(06)00122-9

Toker A, Newton AC. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 2000;275(12):8271-8274.

https://doi.org/10.1074/jbc.275.12.8271

Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000;346(Pt 3):561-576.

https://doi.org/10.1042/bj3460561

Delcommenne M, Tan C, Gray V, RueL, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase- dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 1998;95(19): 11211-11216.

https://doi.org/10.1073/pnas.95.19.11211

Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E, Marchand-Brustel Y. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 1997;138(5):2005-2010.

https://doi.org/10.1210/endo.138.5.5136

Marte BM, Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997;22(9):355-358.

https://doi.org/10.1016/S0968-0004(97)01097-9

Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91(2):231-241.

https://doi.org/10.1016/S0092-8674(00)80405-5

Brunet A, Datta SR, Greenberg ME. Transcription- dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 2001;ll(3):297-305.

https://doi.org/10.1016/S0959-4388(00)00211-7

Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/ AKT/mTOR signalling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 20b3;310(4):1124-1132.

https://doi.org/10.1016/j.bbrc.2003.09.132

Grunwald V, DeGraffenried L, Russel D, Friedrichs WE, Ray RB, Hidalgo M. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 2002; 62(21):6141-6145.

Xu G, Zhang W, Bertram P, Zheng XF, McLeod H. Pharmacogenomic profiling of the PI3K/PTEN- AKT-mTOR pathway in common human tumors. Int J Oncol 2004;24(4):893-900.

https://doi.org/10.3892/ijo.24.4.893

Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 1997;94(17):9052- 9057.

https://doi.org/10.1073/pnas.94.17.9052

Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 1998;280(5369): 1614-1617.

https://doi.org/10.1126/science.280.5369.1614

Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998;95(26):15587-15591.

https://doi.org/10.1073/pnas.95.26.15587

Stambolic V, Suzuki A, De la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998;95(l):29-39.

https://doi.org/10.1016/S0092-8674(00)81780-8

Van der Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 2001 ;21(17): 5899-5912.

https://doi.org/10.1128/MCB.21.17.5899-5912.2001

Hajduch E, Alessi DR, Hemmings BA, Hundal HS. Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes 1998;47(7):1006-1013.

https://doi.org/10.2337/diabetes.47.7.1006

Hajduch E, Litherland GJ, Hundal HS. Protein kinase B (PKB/Akt)_a key regulator of glucose transport? FEBS Lett 2001 ;492(3): 199-203.

https://doi.org/10.1016/S0014-5793(01)02242-6

Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c- Akt): a multifunctional mediator of phosphatidyli- nositol 3-kinase activation. Biochem J 1998;335 (Pt 1):1-13.

https://doi.org/10.1042/bj3350001

Beltran del Rio H, Wilson JE. Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexoki-nase dependent on intramitochondrially generated ATP. Arch Biochem Biophys 1992;296(2): 667-677.

https://doi.org/10.1016/0003-9861(92)90625-7

Van den Heuvel L, Smeitink J. The oxidative phosphorylation (OXPHOS) system: nuclear genes and human genetic diseases. Bioessays 2001 ;23(6): 518-525.

https://doi.org/10.1002/bies.1071

Plas DR, Thompson CB. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 2002; 13(2):75-78.

https://doi.org/10.1016/S1043-2760(01)00528-8

Van der Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 2001 ;21(17): 5899-5912.

https://doi.org/10.1128/MCB.21.17.5899-5912.2001

Rathmell JC, Van der Heiden MG, Harris MH, Frauwirth KA, Thompson CB. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 2000;6(3):683-692.

https://doi.org/10.1016/S1097-2765(00)00066-6

Moley KH, Mueckler MM. Glucose transport and apoptosis. Apoptosis 2000;5(2) 99-105.

https://doi.org/10.1023/A:1009697908332

Plas DR, Talapatra S, Edinger AL, Rathmell JC, Thompson CB. Akt and Bcl-xLpromote growth factor-independent survival through distinct effects on mitochondrial physiology. J Biol Chem 2001 ;276 (15):12041-12048.

https://doi.org/10.1074/jbc.M010551200

Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001;15(11):1406-1418.

https://doi.org/10.1101/gad.889901

Van der Heiden MG, Chandel NS, Li XX, Schu- macker PT, Colombini M, Thompson CB. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 2000;97(9):4666-4671.

https://doi.org/10.1073/pnas.090082297

Van der Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 1999;3(2): 159-167.

https://doi.org/10.1016/S1097-2765(00)80307-X

Van der Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 2001 ;21(17): 5899-5912.

https://doi.org/10.1128/MCB.21.17.5899-5912.2001

Spence AM, Muzi M, Graham MM, O'Sullivan F, Krohn KA, Link JM et al. Glucose metabolism in human malignant gliomas measured quantitatively with PET, l-[C-ll]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med 1998;39(3): 440-448.

Mathupala SP, Rempel A, Pedersen PL. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post- translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Bio- membr 1997;29(4):339-343.

https://doi.org/10.1023/A:1022494613613

Smith TA. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 2000; 57(2): 170-178.

Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL. Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res 1996;56(11):2468-2471.

Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 1997;272(36):22776-22780.

https://doi.org/10.1074/jbc.272.36.22776

Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 2003;278(17): 15333- 15340.

https://doi.org/10.1074/jbc.M300608200

Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochem Biophys Acta 2002; 1555(1- 3): 14-20.

https://doi.org/10.1016/S0005-2728(02)00248-7

Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17(3):590-603.

https://doi.org/10.1038/sj.leu.2402824

Fresno Vara JA, Casado E, De Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004;30(2): 193-204.

https://doi.org/10.1016/j.ctrv.2003.07.007

Blackburn EH. Telomeres: no end in sight. Cell 1994;77(5):621-623.

https://doi.org/10.1016/0092-8674(94)90046-9

Greider CW. Mammalian telomere dynamics: healing, fragmentation, shortening, and stabilization. Curr Opin Genet Dev 1994;4(2):203-211.

https://doi.org/10.1016/S0959-437X(05)80046-2

Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992;11(5):1921-1929.

https://doi.org/10.1002/j.1460-2075.1992.tb05245.x

Langford LA, Piatyszek MA, Xu R, Schold SC Jr., Shay JW. Telomerase activity in human brain tumours. Lancet 1995;346(8985): 1267-1268.

https://doi.org/10.1016/S0140-6736(95)91865-5

KomataT, KanzawaT, Kondo Y, Kondo S. Telomerase as a therapeutic target for malignant gliomas. Oncogene 2002;21 (4):656-663.

https://doi.org/10.1038/sj.onc.1205072

Kimura A, Ohmichi M, Kawagoe J, Kyo S, Mabuchi S, Takahashi T et al. Induction of hTERT expression and phosphorylation by estrogen via Akt cascade in human ovarian cancer cell lines. Oncogene. 2004;23(26(4505-15).

https://doi.org/10.1038/sj.onc.1207582

Kang SS, Kwon T, Kwon DY, Do SI. Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 1999;274(19): 13085-13090.

https://doi.org/10.1074/jbc.274.19.13085

Sonoda Y, Ozawa T, Hirose Y, Aldape KD, McMahon M, Berger MS et al. Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 2001;61(13):4956-4960.

Cómo citar

[1]
Arboleda, G. 2004. Contribución de la vía PI3k/Akt-PTEN y sus blancos corriente abajo en iniciación y progresión de glioblastoma multiforme. Revista Colombiana de Cancerología. 8, 3 (sep. 2004), 28–38.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

01-09-2004

Número

Sección

Artículos de revisión