Terapia génica para el tratamiento del cáncer

Autores/as

  • Josefa A. Rodríguez Instituto Nacional de Cancerología ESE
  • Lina M. Martínez Instituto Nacional de Cancerología ESE
  • Nataly Cruz Instituto Nacional de Cancerología ESE
  • Alba L. Cómbita Instituto Nacional de Cancerología ESE

Palabras clave:

Compensación de mutaciones, Quimioterapia molecular o terapia génica suicida, Terapia antiangiogénesis, Oncólisis viral, Inmunopotenciación genética

Resumen

El cáncer es una enfermedad compleja de etiología desconocida. Factores genéticos y epigenéticos se asocian al incremento en el riesgo de desarrollar esta enfermedad.
A pesar del avance en los tratamientos tradicionales contra el cáncer, el pronóstico de los pacientes no ha mejorado significativamente. Estudios en la patogénesis molecular del cáncer han evidenciado la existencia de dianas moleculares con potencial terapéutico que permiten trasladar los conocimientos de la investigación básica a la clínica implementando nuevas terapias para el beneficio del paciente.
El conocimiento del genoma viral, su función, replicación y los mecanismos de infección a la célula tumoral han permitido el desarrollo de la terapia génica viral que puede ser la herramienta ideal para el tratamiento del cáncer.
Este artículo revisa diferentes metodologías desarrolladas para el diseño de una terapia génica contra el cáncer, abordada desde diferentes contextos biológicos, y su aplicación clínica para el tratamiento del cáncer.

Biografía del autor/a

Josefa A. Rodríguez, Instituto Nacional de Cancerología ESE

Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología ESE., Bogotá, D.C., Colombia

Lina M. Martínez, Instituto Nacional de Cancerología ESE

Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología ESE., Bogotá, D.C., Colombia

Nataly Cruz, Instituto Nacional de Cancerología ESE

Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología ESE., Bogotá, D.C., Colombia

Alba L. Cómbita, Instituto Nacional de Cancerología ESE

Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología ESE., Bogotá, D.C., Colombia

Referencias bibliográficas

Ferlay J. SHBFFDMCaPD. Cancer Incidence and Mortality Worldwide: IARC Cancer Base. 2;10. Lyon, France: International Agency for Research on Cancer: 2008.

Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release. 2012;161:377-88.

https://doi.org/10.1016/j.jconrel.2012.04.008

Raki M, Rein DT, Kanerva A, Hemminki A. Gene transfer approaches for gynecological diseases. Mol Ther. 2006;14: 154-63.

https://doi.org/10.1016/j.ymthe.2006.02.019

Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270:475-80.

https://doi.org/10.1126/science.270.5235.475

Muul LM, Tuschong LM, Soenen SL, Jagadeesh GJ, Ramsey WJ, Long Z, et al. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood. 2003;101:2563-9.

https://doi.org/10.1182/blood-2002-09-2800

Cavazzana-Calvo M, Hacein-Bey S, de Saint BG, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288:669-72.

https://doi.org/10.1126/science.288.5466.669

Cavazzana-Calvo M, Fischer A. Gene therapy for severe combined immunodeficiency: are we there yet? J Clin Invest. 2007;117:1456-65.

https://doi.org/10.1172/JCI30953

Hacein-Bey-Abina S, Von KC, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415-9.

https://doi.org/10.1126/science.1088547

Fujii N, Isaka Y, Takabatake Y, Mizui M, Suzuki C, Takahara S, et al. Targeting of interstitial cells using a simple gene-transfer strategy. Nephrol Dial Transplant. 2006;21:2745-53.

https://doi.org/10.1093/ndt/gfl327

Isaka Y. Gene therapy targeting kidney diseases: routes and vehicles. Clin Exp Nephrol. 2006;10:229-35.

https://doi.org/10.1007/s10157-006-0442-7

Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. Curr Drug Ther. 2009;4:117-38.

https://doi.org/10.2174/157488509788185123

Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 1987;84:7413-7.

https://doi.org/10.1073/pnas.84.21.7413

Jeschke MG, Barrow RE, Hawkins HK, Yang K, Hayes RL, Lichtenbelt BJ, et al. IGF-I gene transfer in thermally injured rats. Gene Ther. 1999;6:1015-20.

https://doi.org/10.1038/sj.gt.3300923

Witlox MA, Lamfers ML, Wuisman PI, Curiel DT, Siegal GP. Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone. 2007;40:797-812.

https://doi.org/10.1016/j.bone.2006.10.017

Bleiziffer O, Eriksson E, Yao F, Horch RE, Kneser U. Gene transfer strategies in tissue engineering. J Cell Mol Med. 2007;11:206-23.

https://doi.org/10.1111/j.1582-4934.2007.00027.x

Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7:33-40.

https://doi.org/10.1038/83324

McConnell MJ , Imperiale MJ .Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther. 2004;15:1022-33. 18. Nadeau I, Kamen A. Production of adenovirus vector for gene therapy. Biotechnol Adv. 2003;20:475-89.

https://doi.org/10.1016/S0734-9750(02)00030-7

Li J, Zeng W, Huang Y, Zhang Q, Hu P, Rabkin SD, et al. Treatment of breast cancer stem cells with oncolytic herpes simplex virus. Cancer Gene Ther. 2012;19:707-14.

https://doi.org/10.1038/cgt.2012.49

Ni TH, McDonald WF, Zolotukhin I, Melendy T, Waga S, Stillman B, et al. Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection. J Virol. 1998;72:2777-87.

https://doi.org/10.1128/JVI.72.4.2777-2787.1998

Melero I, Vile RG, Colombo MP. Feeding dendritic cells with tumor antigens: self-service buffet or a la carte? Gene Ther. 2000;7:1167-70.

https://doi.org/10.1038/sj.gt.3301234

Moniri MR, Sun XY, Rayat J, Dai D, He Z, Verchere CB, et al. TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells. Cancer Gene Ther. 2012;19:652-8.

https://doi.org/10.1038/cgt.2012.46

Ochsenreither S, Majeti R, Schmitt T, Stirewalt D, Keilholz U, Loeb KR, et al. Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood. 2012;119:5492-501.

https://doi.org/10.1182/blood-2011-07-365890

Anderson WF. Human gene therapy. Science. 1992;256:808-13.

Cheng L, Ziegelhoffer PR, Yang NS. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA. 1993;90:4455-9.

https://doi.org/10.1073/pnas.90.10.4455

Sangro B, Herraiz M, Prieto J. Gene therapy of neoplastic liver diseases. Int J Biochem Cell Biol. 2003;35:135-48.

https://doi.org/10.1016/S1357-2725(02)00163-2

Casado E, Nettelbeck DM, Gomez-Navarro J, Hemminki A, Gonzalez Baron M, Siegal GP, et al. Transcriptional targeting for ovarian cancer gene therapy. Gynecol Oncol. 2001;82: 229-37.

https://doi.org/10.1006/gyno.2001.6305

Ren SP, Wu CT, Huang WR, Lu ZZ, Kia XX, Wang L, et al. Adenoviral-mediated transfer of human wild-type p53, GM-CSF and B7-1 genes results in growth suppression and autologous anti-tumor cytotoxicity of multiple myeloma cells in vitro. Cancer Immunol Immunother. 2006;55:375-85.

https://doi.org/10.1007/s00262-005-0011-z

Ahn WS, Bae SM, Lee KH, Lee JM, Namkoong SE, Chun HJ, et al. Recombinant adenovirus-p53 gene transfer and cell-specific growth suppression of human cervical cancer cells in vitro and in vivo. Gynecol Oncol. 2004;92:611-21.

https://doi.org/10.1016/j.ygyno.2003.10.033

Ahn WS, Bae SM, Lee JM, Namkoong SE, Yoo JY, Seo YS, et al. Anti-cancer effect of adenovirus p53 on human cervical cancer cell growth in vitro and in vivo. Int J Gynecol Cancer. 2004;14:322-32.

https://doi.org/10.1136/ijgc-00009577-200403000-00020

Ganjavi H, Gee M, Narendran A, Parkinson N, Krishnamoorthy M, Freedman MH, et al. Adenovirus-mediated p53 gene therapy in osteosarcoma cell lines: sensitization to cisplatin and doxorubicin. Cancer Gene Ther. 2006;13:415-9.

https://doi.org/10.1038/sj.cgt.7700909

Swisher SG, Roth JA. p53 Gene therapy for lung cancer. Curr Oncol Rep. 2002;4:334-40.

https://doi.org/10.1007/s11912-002-0009-z

Inoue H, Shiraki K, Murata K, Sugimoto K, Kawakita T, Yamaguchi Y, et al. Adenoviral-mediated transfer of p53 gene enhances TRAIL-induced apoptosis in human hepatocellular carcinoma cells. Int J Mol Med. 2004;14:271-5.

https://doi.org/10.3892/ijmm.14.2.271

Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus- mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res. 1995;55:4210-3.

El-Deiry WS. The role of p53 in chemosensitivity and radiosensitivity. Oncogene. 2003;22:7486-95.

https://doi.org/10.1038/sj.onc.1206949

Roth JA. Adenovirus p53 gene therapy. Expert Opin Biol Ther. 2006;6:55-61.

https://doi.org/10.1517/14712598.6.1.55

Ma G, Shimada H, Hiroshima K, Tada Y, Suzuki N, Tagawa M. Gene medicine for cancer treatment: commercially available medicine and accumulated clinical data in China. Drug Des Devel Ther. 2009;2:115-22.

https://doi.org/10.2147/DDDT.S3535

Shi J, Zheng D. An update on gene therapy in China. Curr Opin Mol Ther. 2009;11:547-53.

Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther. 2005;16:1016-27.

https://doi.org/10.1089/hum.2005.16.1016

INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201. Drugs R.D. 2007;8:176-87.

https://doi.org/10.2165/00126839-200708030-00005

Zhang X, Liu S, Liang C, Yang H. Adenovirus-mediated Rb gene transfect for head and neck cancer. Hua Xi Yi Ke Da Xue Xue Bao. 2001;32:194-5, 207.

Zhang X, Multani AS, Zhou JH, Shay JW, McConkey D, Dong L, et al. Adenoviral-mediated retinoblastoma 94 produces rapid telomere erosion, chromosomal crisis, and caspase-dependent apoptosis in bladder cancer and immortalized human urothelial cells but not in normal urothelial cells. Cancer Res. 2003;63:760-5.

Zhou J, Zhang XQ, Ashoori F, McConkey DJ, Knowles MA, Dong L, et al. Early RB94-produced cytotoxicity in cancer cells is independent of caspase activation or 50 kb DNA fragmentation. Cancer Gene Ther. 2009;16:13-9.

https://doi.org/10.1038/cgt.2008.54

Millikan RE, Perez CA. A Phase I Study of Systemic Gene Therapy With SGT-94 in Patients With Solid Tumors. [Internet]. 27 Jul 2012.

Eberle J, Fecker LF, Hossini AM, Kurbanov BM, Fechner H. Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol. 2008;17:1-11.

https://doi.org/10.1111/j.1600-0625.2007.00655.x

Kagaya T, Nakamoto Y, Sakai Y, Tsuchiyama T, Yagita H, Mukaida N, et al. Monocyte chemoattractant protein-1 gene delivery enhances antitumor effects of herpes simplex virus thymidine kinase/ganciclovir system in a model of colon cancer. Cancer Gene Ther. 2006;13:357-66.

https://doi.org/10.1038/sj.cgt.7700908

Tu SP, Liston P, Cui JT, Lin MC, Jiang XH, Yang Y, et al. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer. Int J Cancer. 2009;125: 688-97.

https://doi.org/10.1002/ijc.24282

Dachs GU, Tupper J, Tozer GM. From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs. 2005;16:349-59.

https://doi.org/10.1097/00001813-200504000-00001

Wang J, Lu XX, Chen DZ, Li SF, Zhang LS. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World J Gastroenterol. 2004;10:400-3.

https://doi.org/10.3748/wjg.v10.i3.400

Chen L, Waxman DJ. Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer. Curr Pharm Des. 2002;8: 1405-16.

https://doi.org/10.2174/1381612023394566

Maatta AM, Samaranayake H, Pikkarainen J, Wirth T, Yla-Herttuala S. Adenovirus mediated herpes simplex virus-thymidine kinase/ ganciclovir gene therapy for resectable malignant glioma. Curr Gene Ther. 2009;9:356-67.

https://doi.org/10.2174/156652309789753365

Huang Q, Pu P, Xia Z, You Y. Exogenous wt-p53 enhances the antitumor effect of HSV-TK/GCV on C6 glioma cells. J Neurooncol. 2007;82:239-48.

https://doi.org/10.1007/s11060-006-9279-x

Huang H, Tan WL, Zhu WH, Liang ZK. Lethal effect of adenovirus-mediated HSV-TK gene in combination with hydroxycamptothecin on human bladder cancer in vitro. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27:461-4.

Luo XR, Li JS, Niu Y, Miao L. Adenovirus-mediated double suicide gene selectively kills gastric cancer cells. Asian Pac J Cancer Prev. 2012;13:781-4.

https://doi.org/10.7314/APJCP.2012.13.3.781

Maatta AM, Tenhunen A, Pasanen T, Meriläinen O, Pellinen R, Mäkinen K, et al. Non-small cell lung cancer as a target disease for herpes simplex type 1 thymidine kinase-ganciclovir gene therapy. Int J Oncol. 2004;24:943-9.

https://doi.org/10.3892/ijo.24.4.943

Immonen A, Vapalahti M, Tyynelä K, Hurskainen H, Sandmair A, Vanninen R, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 2004;10:967-72.

https://doi.org/10.1016/j.ymthe.2004.08.002

Sviatchenko VA, Tarasova MV, Netesov SV, Chumakov PM. Oncolytic adenoviruses in anti-cancer therapy: current status and perspectives. Mol Biol (Mosk). 2012;46:556-69.

https://doi.org/10.1134/S0026893312040103

Wildner O. Comparison of replication-selective, oncolytic viruses for the treatment of human cancers. Curr Opin Mol Ther. 2003;5:351-61.

Wildner O, Hoffmann D, Jogler C, Uberla K. Comparison of HSV-1 thymidine kinase-dependent and -independent inhibition of replication-competent adenoviral vectors by a panel of drugs. Cancer Gene Ther. 2003;10:791-802.

https://doi.org/10.1038/sj.cgt.7700638

Alemany R, Balague C, Curiel DT. Replicative adenoviruses for cancer therapy. Nat Biotechnol. 2000;18:723-7.

https://doi.org/10.1038/77283

Curiel DT. Strategies to adapt adenoviral vectors for targeted delivery. Ann N Y Acad Sci. 1999;886:158-71.

https://doi.org/10.1111/j.1749-6632.1999.tb09409.x

Vasey PA, Shulman LN, Campos S, Davis J, Gore M, Johnston S, et al. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/ refractory epithelial ovarian cancer. J Clin Oncol. 2002;20: 1562-9.

https://doi.org/10.1200/JCO.2002.20.6.1562

Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001;19:289-98.

https://doi.org/10.1200/JCO.2001.19.2.289

Dias JD, Liikanen I, Guse K, Foloppe J, Sloniecka M, Diaconu I, et al. Targeted chemotherapy for head and neck cancer with a chimeric oncolytic adenovirus coding for bifunctional suicide protein FCU1. Clin Cancer Res. 2010;16:2540-9.

https://doi.org/10.1158/1078-0432.CCR-09-2974

Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets. 2007;7:141-8.

https://doi.org/10.2174/156800907780058817

Xia ZJ, Chang JH, Zhang L, Jiang WQ, Guan ZZ, Liu JW, et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng. 2004;23:1666-70.

Zhang J, Wei F , Wang H , LiH , Qiu W, Ren P , etal . Anovel oncolytic adenovirus expressing Escherichia coli cytosine deaminase exhibits potent antitumor effect on human solid tumors. Cancer Biother Radiopharm. 2010;25:487-95.

https://doi.org/10.1089/cbr.2009.0752

Dias JD, Guse K, Nokisalmi P, Eriksson M, Chen DT, Diaconu I, et al. Multimodal approach using oncolytic adenovirus, cetuximab, chemotherapy and radiotherapy in HNSCC low passage tumour cell cultures. Eur J Cancer. 2010;46: 625-35.

https://doi.org/10.1016/j.ejca.2009.11.005

Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, , et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19:2-12.

https://doi.org/10.1038/sj.onc.1203251

Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med. 2000;6:1134-9.

https://doi.org/10.1038/80474

Tuting T, Storkus WJ, Lotze MT. Gene-based strategies for the immunotherapy of cancer. J Mol Med (Berl). 1997;75:478-91.

https://doi.org/10.1007/s001090050133

Barajas M, Mazzolini G, Genové G, Bilbao R, Narvaiza I, Schmitz V, et al. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology. 2001;33:52-61.

https://doi.org/10.1053/jhep.2001.20796

Slos P, De MM, Leroy P, Rousseau C, Acres B. Immunotherapy of established tumors in mice by intratumoral injection of an adenovirus vector harboring the human IL-2 cDNA: induction of CD8(+) T-cell immunity and NK activity. Cancer Gene Ther. 2001;8:321-32.

https://doi.org/10.1038/sj.cgt.7700309

Nakamura M, Iwahashi M, Nakamori M, Ueda K, Matsuura I, Noguchi K, et al. Dendritic cells genetically engineered to simultaneously express endogenous tumor antigen and granulocyte macrophage colony-stimulating factor elicit potent therapeutic antitumor immunity. Clin Cancer Res. 2002;8:2742-9.

Volpert OV, Dameron KM, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene. 1997;14:1495-502.

https://doi.org/10.1038/sj.onc.1200977

Ribatti D, Vacca A, Presta M. The discovery of angiogenic factors: a historical review. Gen Pharmacol. 2000;35:227-31.

https://doi.org/10.1016/S0306-3623(01)00112-4

Denekamp J, Dasu A, Waites A. Vasculature and microenvironmental gradients: the missing links in novel approaches to cancer therapy? Adv Enzyme Regul. 1998;38:281-99.

https://doi.org/10.1016/S0065-2571(97)00015-0

Liang Z, Wu J, Huang J, Tan W, Ke M, Liu R, et al. Bioactivity and stability analysis of endostatin purified from fermentation supernatant of 293 cells transfected with Ad/rhEndo. Protein Expr Purif. 2007;56:205-11.

https://doi.org/10.1016/j.pep.2007.08.008

Adhim Z, Lin X, Huang W, Morishita N, Nakamura T, Yasui H, et al. E10A, an adenovirus-carrying endostatin gene, dramatically increased the tumor drug concentration of metronomic chemotherapy with low-dose cisplatin in a xenograft mouse model for head and neck squamous-cell carcinoma. Cancer Gene Ther. 2012;19:144-52.

https://doi.org/10.1038/cgt.2011.79

LinX , Huang H , Li S , Li H , Li Y , Cao Y , etal. Aphase I clinical trial of an adenovirus-mediated endostatin gene (E10A) in patients with solid tumors. Cancer Biol Ther. 2007;6:648-53.

https://doi.org/10.4161/cbt.6.5.4004

Jin X, Bookstein R, Wills K, Avanzini J, Tsai V, LaFace D, et al. Evaluation of endostatin antiangiogenesis gene therapy in vitro and in vivo. Cancer Gene Ther. 2001;8:982-9.

https://doi.org/10.1038/sj.cgt.7700396

He GA, Xue G, Xiao L, Wu JX, Xu BL, Huang JL, et al. Dynamic distribution and expression in vivo of human endostatin gene delivered by adenoviral vector. Life Sci. 2005;77:1331-40.

https://doi.org/10.1016/j.lfs.2005.01.023

Wenqi Jiang. Phase I Trial of Intratumoral Injection of an Adenovirus Encoding Human Endostatin for Advanced Solid Tumors. [Internet] 20 Ago 2013. Clinical Trials Feeds.org

He H, Fan P, Yin T, Chen Q, Shi H, Liu S, et al. Local delivery of recombinant adenovirus expressing hepatitis B virus X protein and interleukin-12 results in antitumor effects via inhibition of hepatoma cell growth and intervention of tumor microenvironment. Int J Mol Med. 2012;30:599-605.

https://doi.org/10.3892/ijmm.2012.1027

Nokisalmi P, Rajecki M, Pesonen S, Escutenaire S, Soliymani R, Tenhunen M, et al. Radiation-induced upregulation of gene expression from adenoviral vectors mediated by DNA damage repair and regulation. Int J Radiat Oncol Biol Phys. 2012;83:376-84.

https://doi.org/10.1016/j.ijrobp.2011.06.1973

Predina JD, Judy B, Aliperti LA, Fridlender ZG, Blouin A, Kapoor V, et al. Neoadjuvant in situ gene-mediated cytotoxic immunotherapy improves postoperative outcomes in novel syngeneic esophageal carcinoma models. Cancer Gene Ther. 2011;18:871-83.

https://doi.org/10.1038/cgt.2011.56

Tang Y, Wu H, Ugai H, Matthews QL, Curiel DT. Derivation of a triple mosaic adenovirus for cancer gene therapy. PLoS.One. 2009;4:e8526.

https://doi.org/10.1371/journal.pone.0008526

Appledorn DM, Patial S, McBride A, Godbehere S, Van Rooijen N, Parameswaran N, et al. Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J Immunol. 2008;181:2134-44.

https://doi.org/10.4049/jimmunol.181.3.2134

Appledorn DM, Kiang A, McBride A, Jiang H, Seregin S, Scott JM, et al. Wild-type adenoviruses from groups A-F evoke unique innate immune responses, of which HAd3 and SAd23 are partially complement dependent. Gene Ther. 2008;15: 885-901.

https://doi.org/10.1038/gt.2008.18

Kaufmann JK, Nettelbeck DM. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond. Trends Mol Med. 2012;18:365-76.

https://doi.org/10.1016/j.molmed.2012.04.008

Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 2005;12 Suppl 1:S18-S27.

https://doi.org/10.1038/sj.gt.3302612

Narumi K, Kondoh A, Udagawa T, Hara H, Goto N, Ikarashi Y, et al. Administration route-dependent induction of antitumor immunity by interferon-alpha gene transfer. Cancer Sci. 2010;101:1686-94.

https://doi.org/10.1111/j.1349-7006.2010.01578.x

Muhammad AK, Puntel M, Candolfi M, Salem A, Yagiz K, Farrokhi C, et al. Study of the efficacy, biodistribution, and safety profile of therapeutic gutless adenovirus vectors as a prelude to a phase I clinical trial for glioblastoma. Clin Pharmacol Ther. 2010;88:204-13.

https://doi.org/10.1038/clpt.2009.260

Williams BJ, Bhatia S, Adams LK, Boling S, Carroll JL, Li XL, et al. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector. PLoS One. 2012;7:e46981.

https://doi.org/10.1371/journal.pone.0046981

Muthana M, Giannoudis A, Scott SD, Fang HY, Coffelt SB, Morrow FJ, et al. Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res. 2011;71:1805-15.

https://doi.org/10.1158/0008-5472.CAN-10-2349

Cómo citar

[1]
Rodríguez J.A. et al. 2014. Terapia génica para el tratamiento del cáncer. Revista Colombiana de Cancerología. 18, 1 (mar. 2014), 27–40.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

01-03-2014

Número

Sección

Artículos de revisión