Biomarcadores de pronóstico en pacientes con cáncer de próstata localizado

Autores/as

  • Natalia Acosta Instituto Nacional de Cancerología
  • Rodolfo Varela Universidad Nacional de Colombia
  • Jorge Andrés Mesa Instituto Nacional de Cancerología
  • Martha Lucía Serrano López Universidad Nacional de Colombia
  • Alba Lucía Cómbita Universidad Nacional de Colombia
  • María Carolina Sanabria-Salas Instituto Nacional de Cancerología

DOI:

https://doi.org/10.35509/01239015.201

Palabras clave:

Neoplasias de la próstata, Marcadores biológicos, Pronóstico

Resumen

El tratamiento para cáncer de próstata localizado (prostatectomía radical o radioterapia) ofrece unas altas tasas de curación; sin embargo, del 20 al 30% de los casos desarrollan recurrencia bioquímica. Actualmente, existen factores clínicos y patológicos que ayudan a predecir recurrencia; no obstante tanto el carácter heterogéneo de estos tumores, las diferencias en los tiempos de progresión de cáncer localizado a metastásico como la resistencia al tratamiento han dado lugar a imprecisiones en la predicción del pronóstico y a tratamientos insuficientes o excesivos. Debido a esto se han estudiado biomarcadores con el fin de estratificar más acertadamente el riesgo y mejorar las decisiones de tratamiento de una manera adecuada y oportuna. Este manuscrito presenta una revisión de marcadores moleculares de pronóstico que se han propuesto en los pacientes con cáncer de próstata localizado, lo que podría permitir establecer con mayor precisión el riesgo de recurrencia de la enfermedad.

Biografía del autor/a

Natalia Acosta, Instituto Nacional de Cancerología

Grupo de Investigación en Biología del Cáncer, Subdirección General de Investigaciones, Instituto Nacional de Cancerología, Bogotá D. C., Colombia

Rodolfo Varela, Universidad Nacional de Colombia

Clínica de Urología, Instituto Nacional de Cancerología, Facultad de Medicina, Universidad Nacional de Colombia,Bogotá D. C., Colombia

Jorge Andrés Mesa, Instituto Nacional de Cancerología

Grupo de Patología Oncológica, Subdirección General de Atención Médica y Docencia, Instituto Nacional de Cancerología, Bogotá D. C., Colombia

Martha Lucía Serrano López, Universidad Nacional de Colombia

Grupo de Investigación en Biología del Cáncer, Subdirección General de Investigaciones, Instituto Nacional de Cancerología, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D. C., Colombia

Alba Lucía Cómbita, Universidad Nacional de Colombia

Grupo de Investigación en Biología del Cáncer, Subdirección General de Investigaciones, Instituto Nacional de Cancerología, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia,
Bogotá D. C., Colombia

María Carolina Sanabria-Salas, Instituto Nacional de Cancerología

Grupo de Investigación en Biología del Cáncer, Subdirección General de Investigaciones, Instituto Nacional de Cancerología, Bogotá D. C., Colombia

Referencias bibliográficas

Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rabelo M, et al. Cancer Incidence and Mortality Worlwide: IARC Cancer Base No. 11 Lyon, France: International Agency for Research on Cancer2012. Disponible en: http://globocan.iar.fr

Pardo C, Cendales R. Incidencia, mortalidad y prevalencia de cáncer en Colombia 2007-20112015. 148 p.

Etzioni R, Tsodikov A, Mariotto A, Szabo A, Falcon S, Wegelin J, et al. Quantifying the role of PSA screening in the US prostate cancer mortality decline. Cancer Causes Control. 2008;19:175-81.

https://doi.org/10.1007/s10552-007-9083-8

Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Zappa M, Nelen V, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384:2027-35.

https://doi.org/10.1016/S0140-6736(14)60525-0

Bradford TJ, Tomlins SA, Wang X, Chinnaiyan AM. Molecular markers of prostate cancer. Urol Oncol. 2006;24:538-51.

https://doi.org/10.1016/j.urolonc.2006.07.004

D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280:969-74.

https://doi.org/10.1001/jama.280.11.969

Van der Kwast TH, Bolla M, Van Poppel H, Van Cangh P, Vekemans K, Da Pozzo L, et al. Identification of patients with prostate cancer who benefit from immediate postoperative radiotherapy: EORTC 22911. J Clin Oncol. 2007;25:4178-86.

https://doi.org/10.1200/JCO.2006.10.4067

Bibikova M, Chudin E, Arsanjani A, Zhou L, Garcia EW, Modder J, et al. Expression signatures that correlated with Gleason score and relapse in prostate cancer. Genomics. 2007;89:666-72.

https://doi.org/10.1016/j.ygeno.2007.02.005

Epstein JI, Allsbrook WC, Amin MB, Egevad LL, Committee IG. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol. 2005;29:1228-42.

https://doi.org/10.1097/01.pas.0000173646.99337.b1

Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293:2095-101.

https://doi.org/10.1001/jama.293.17.2095

van Oort IM, Hulsbergen-vandeKaa CA, Witjes JA. Prognostic Factors in Radical Prostatectomy Specimens: What DoWe Need to Know from Pathologists? 2008;7:715-22.

https://doi.org/10.1016/j.eursup.2008.07.002

Simmons MN, Stephenson AJ, Klein EA. Natural history of biochemical recurrence after radical prostatectomy: risk assessment for secondary therapy. Eur Urol. 2007;51:1175-84.

https://doi.org/10.1016/j.eururo.2007.01.015

Mohler J, Bahnson RR, Boston B, Busby JE, D'Amico A, Eastham JA, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010;8:162-200.

https://doi.org/10.6004/jnccn.2010.0012

D'Amico AV, Whittington R, Malkowicz SB, Fondurulia J, Chen MH, Kaplan I, et al. Pretreatment nomogram for prostate specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J Clin Oncol. 1999;17:168-72.

https://doi.org/10.1200/JCO.1999.17.1.168

Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281:1591-7.

https://doi.org/10.1001/jama.281.17.1591

Cooperberg MR, Freedland SJ, Pasta DJ, Elkin EP, Presti JC, Amling CL, et al. Multiinstitutional validation of the UCSF cancer of the prostate risk assessment for prediction of recurrence after radical prostatectomy. Cancer. 2006;107:2384-91.

https://doi.org/10.1002/cncr.22262

Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. 2009;101:878-87.

https://doi.org/10.1093/jnci/djp122

Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90:766-71.

https://doi.org/10.1093/jnci/90.10.766

Stephenson AJ, Kattan MW, Eastham JA, Bianco FJ, Yossepowitch O, Vickers AJ, et al. Prostate cancer-specific mortality after radical prostatectomy for patients treated in the prostate-specific antigen era. J Clin Oncol. 2009;27:4300-5.

https://doi.org/10.1200/JCO.2008.18.2501

Social MdSyP, Departamento Administrativo de Ciencia TeIC, Salud IdETe, Urología SCd, Cancerología INd. Guía de práctica clínica (GPC) para la detección temprana, diagnóstico, tratamiento, seguimiento y rehabilitación del cáncer de próstata para el Sistema General de Seguridad Social en Salud, Colombia: Ministerio de Salud y Protección Social, Dirección General de Aseguramiento Riesgos Profesionales y Pensiones, Departamento Administrativo de Ciencia Tecnología e Innovación (Colciencias), Dirección de Fomento a la Investigación, Programa de Ciencia y Tecnología de la Salud; 2013.

Vesely S, Jarolim L, Duskova K, Schmidt M, Dusek P, Babjuk M. The use of early postoperative prostate-specific antigen to stratify risk in patients with positive surgical margins after radical prostatectomy. BMC Urol. 2014;14:79.

https://doi.org/10.1186/1471-2490-14-79

Guía de práctica clínica (GPC) para la detección temprana, diagnóstico, tratamiento, seguimiento y rehabilitación del cáncer de próstata - Sistema General de Seguridad Social en Salud - Colombia, Guía No. GPC-2013-21 (2013).

Nishio R, Furuya Y, Nagakawa O, Fuse H. Metastatic prostate cancer with normal level of serum prostate-specific antigen. Int Urol Nephrol. 2003;35:189-92.

https://doi.org/10.1023/B:UROL.0000020306.08275.49

Leibovici D, Spiess PE, Agarwal PK, Tu SM, Pettaway CA, Hitzhusen K, et al. Prostate cancer progression in the presence of undetectable or low serum prostate-specific antigen level. Cancer. 2007;109:198-204.

https://doi.org/10.1002/cncr.22372

Dong F, Wang C, Farris AB, Wu S, Lee H, Olumi AF, et al. Impact on the Clinical Outcome of Prostate Cancer by the 2005 International Society of Urological Pathology Modified Gleason Grading System. Am J Surg Pathol. 2012;36:838-43.

https://doi.org/10.1097/PAS.0b013e3182486faf

Pontes-Junior J, Reis ST, de Oliveira LC, Sant'anna AC, Dall'oglio MF, Antunes AA, et al. Association between integrin expression and prognosis in localized prostate cancer. Prostate. 2010;70:1189-95.

https://doi.org/10.1002/pros.21153

Pontes-Junior J, Reis ST, Bernardes FS, Oliveira LC, Barros EA, Dall'Oglio MF, et al. Correlation between beta1 integrin expression and prognosis in clinically localized prostate cancer. Int Braz J Urol. 2013;39:335-42, discussion 43.

https://doi.org/10.1590/S1677-5538.IBJU.2013.03.06

Wang Z, Tseng CP, Pong RC, Chen H, McConnell JD, Navone N, et al. The mechanism of growth-inhibitory effect of DOC- 2/DAB2 in prostate cancer. Characterization of a novel GTPaseactivating protein associated with N-terminal domain of DOC- 2/DAB2. J Biol Chem. 2002;277:12622-31.

https://doi.org/10.1074/jbc.M110568200

Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med. 2010;16:286-94.

https://doi.org/10.1038/nm.2100

Hsieh JT, Karam JA, Min W. Genetic and biologic evidence that implicates a gene in aggressive prostate cancer. J Natl Cancer Inst. 2007;99:1823-4.

https://doi.org/10.1093/jnci/djm263

Wu K, Liu J, Tseng SF, Gore C, Ning Z, Sharifi N, et al. The role of DAB2IP in androgen receptor activation during prostate cancer progression. Oncogene. 2014;33:1954-63.

https://doi.org/10.1038/onc.2013.143

Zhang H, Qi C, Li L, Luo F, Xu Y. Clinical significance of NUCB2 mRNA expression in prostate cancer. J Exp Clin Cancer Res. 2013;32:56.

https://doi.org/10.1186/1756-9966-32-56

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644-8.

https://doi.org/10.1126/science.1117679

Barwick BG, Abramovitz M, Kodani M, Moreno CS, Nam R, Tang W, et al. Prostate cancer genes associated with TMPRSS2-ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br J Cancer. 2010;102:570-6.

https://doi.org/10.1038/sj.bjc.6605519

Carozzi F, Tamburrino L, Bisanzi S, Marchiani S, Paglierani M, Di Lollo S, et al. Are biomarkers evaluated in biopsy specimens predictive of prostate cancer aggressiveness? J Cancer Res Clin Oncol. 2016;142:201-12.

https://doi.org/10.1007/s00432-015-2015-1

La M, KimK, Park J,Won J, Lee JH, Fu YM, et al. Daxx-mediated transcriptional repression of MMP1 gene is reversed by SPOP. Biochem Biophys Res Commun. 2004;320:760-5.

https://doi.org/10.1016/j.bbrc.2004.06.022

Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH, et al. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem. 2006;281:12664-72.

https://doi.org/10.1074/jbc.M600204200

Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44:685-9.

https://doi.org/10.1038/ng.2279

García-Flores M, Casanova-Salas I, Rubio-Briones J, Calatrava A, Domínguez-Escrig J, Rubio L, et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur J Cancer. 2014;50:2994-3002.

https://doi.org/10.1016/j.ejca.2014.08.009

Blattner M, Lee DJ, O'Reilly C, Park K, MacDonald TY, Khani F, et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia. 2014;16:14-20.

https://doi.org/10.1593/neo.131704

Li T, Gui Y, Yuan T, Liao G, Bian C, Jiang Q, et al. Overexpression of high mobility group box 1 with poor prognosis in patients after radical prostatectomy. BJU Int. 2012;110 11 Pt C:E1125-30.

https://doi.org/10.1111/j.1464-410X.2012.11277.x

Feferman L, Bhattacharyya S, Deaton R, Gann P, Guzman G, Kajdacsy-Balla A, et al. Arylsulfatase B (Nacetylgalactosamine- 4-sulfatase): potential role as a biomarker in prostate cancer. Prostate Cancer Prostatic Dis. 2013;16: 277-84.

https://doi.org/10.1038/pcan.2013.18

Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, De Marzo AM. Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget. 2011;2:669-83.

https://doi.org/10.18632/oncotarget.327

Li K, Chen MK, Situ J, Huang WT, Su ZL, He D, et al. Role of co-expression of c-Myc, EZH2 and p27 in prognosis of prostate cancer patients after surgery. Chin Med J (Engl). 2013;126:82-7.

Chung SC, Hammarsten P, Josefsson A, Stattin P, Granfors T, Egevad L, et al. A high cannabinoid CB(1) receptor immunoreactivity is associated with disease severity and outcome in prostate cancer. Eur J Cancer. 2009;45: 174-82.

https://doi.org/10.1016/j.ejca.2008.10.010

Petrovic N, Schacke W, Gahagan JR, O'Conor CA, Winnicka B, Conway RE, et al. CD13/APN regulates endothelial invasion and filopodia formation. Blood. 2007;110:142-50.

https://doi.org/10.1182/blood-2006-02-002931

Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, et al. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology. 2002;122:376-86.

https://doi.org/10.1053/gast.2002.31095

Ishii K, Usui S, Sugimura Y, Yoshida S, Hioki T, Tatematsu M, et al. Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion. Int J Cancer. 2001;92:49-54.

https://doi.org/10.1002/1097-0215(200102)9999:9999<::AID-IJC1161>3.0.CO;2-S

Sorensen KD, Abildgaard MO, Haldrup C, Ulhoi BP, Kristensen H, Strand S, et al. Prognostic significance of aberrantly silenced ANPEP expression in prostate cancer. Br J Cancer. 2013;108:420-8.

https://doi.org/10.1038/bjc.2012.549

Kluth M, Hesse J, Heinl A, Krohn A, Steurer S, Sirma H, et al. Genomic deletion of MAP3K7 at 6q12-22 is associated with early PSA recurrence in prostate cancer and absence of TMPRSS2:ERG fusions. Mod Pathol. 2013;26: 975-83.

https://doi.org/10.1038/modpathol.2012.236

Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science. 1995;270:2008-11.

https://doi.org/10.1126/science.270.5244.2008

LiuW, Chang BL, Cramer S, Koty PP, Li T, Sun J, et al. Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers. Clin Cancer Res. 2007;13:5028-33.

https://doi.org/10.1158/1078-0432.CCR-07-0300

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11-22.

https://doi.org/10.1016/j.ccr.2010.05.026

Leinonen KA, Saramäki OR, Furusato B, Kimura T, Takahashi H, Egawa S, et al. Loss of PTEN is associated with aggressive behavior in ERG-positive prostate cancer. Cancer Epidemiol Biomarkers Prev. 2013;22:2333-44.

https://doi.org/10.1158/1055-9965.EPI-13-0333-T

Slezak J, Truong M, Huang W, Jarrard D. HP1gamma expression is elevated in prostate cancer and is superior to Gleason score as a predictor of biochemical recurrence after radical prostatectomy. BMC Cancer. 2013;13:148.

https://doi.org/10.1186/1471-2407-13-148

D'Antonio KB, Toubaji A, Albadine R, Mondul AM, Platz EA, Netto GJ, et al. Extracellular matrix associated protein CYR61 is linked to prostate cancer development. J Urol. 2010;183:1604-10.

https://doi.org/10.1016/j.juro.2009.12.006

D'Antonio KB, Schultz L, Albadine R, Mondul AM, Platz EA, Netto GJ, et al. Decreased expression of Cyr61 is associated with prostate cancer recurrence after surgical treatment. Clin Cancer Res. 2010;16:5908-13.

https://doi.org/10.1158/1078-0432.CCR-10-1200

Thomsen MK, Francis JC, Swain A. The role of Sox9 in prostate development. Differentiation. 2008;76:728-35.

https://doi.org/10.1111/j.1432-0436.2008.00293.x

Zhong WD, Qin GQ, Dai QS, Han ZD, Chen SM, Ling XH, et al. SOXs in human prostate cancer: implication as progression and prognosis factors. BMC Cancer. 2012;12:248.

https://doi.org/10.1186/1471-2407-12-248

Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A'Hern R, et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 2009;69:2912-8.

https://doi.org/10.1158/0008-5472.CAN-08-3667

Leyten GH, Hessels D, Jannink SA, Smit FP, de Jong H, Cornel EB, et al. Prospective Multicentre Evaluation of PCA3 and TMPRSS2-ERG Gene Fusions as Diagnostic and Prognostic Urinary Biomarkers for Prostate Cancer. Eur Urol. 2012.

https://doi.org/10.1016/j.juro.2012.02.2272

Verdun RE, Karlseder J. Replication and protection of telomeres. Nature. 2007;447:924-31.

https://doi.org/10.1038/nature05976

Dasi F, Martinez-Rodes P, March JA, Santamaria J, Martinez- Javaloyas JM, Gil M, et al. Real-time quantification of human telomerase reverse transcriptase mRNA in the plasma of patients with prostate cancer. Ann N Y Acad Sci. 2006;1075:204-10.

https://doi.org/10.1196/annals.1368.028

March-Villalba JA, Martinez-Jabaloyas JM, Herrero MJ, Santamaria J, Alino SF, Dasi F. Plasma hTERT mRNA discriminates between clinically localized and locally advanced disease and is a predictor of recurrence in prostate cancer patients. Expert Opin Biol Ther. 2012;12 Suppl 1:S69-77. 65. March-Villalba JA, Martinez-Jabaloyas JM, Herrero MJ, Santamaria J, Alino SF, Dasi F. Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics. PLoS One. 2012;7:e43470.

https://doi.org/10.1517/14712598.2012.685716

Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 2008;13:519-28.

https://doi.org/10.1016/j.ccr.2008.04.016

Grupp K, Diebel F, Sirma H, Simon R, Breitmeyer K, Steurer S, et al. SPINK1 expression is tightly linked to 6q15- and 5q21- deleted ERG-fusion negative prostate cancers but unrelated to PSA recurrence. Prostate. 2013;73:1690-8.

https://doi.org/10.1002/pros.22707

Flavin R, Pettersson A, Hendrickson WK, Fiorentino M, Finn S, Kunz L, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20:4904-11.

https://doi.org/10.1158/1078-0432.CCR-13-1341

Westermann AM, Schmidt D, Holdenrieder S, Moritz R, Semjonow A, Schmidt M, et al. Serum microRNAs as biomarkers in patients undergoing prostate biopsy: results from a prospective multi-center study. Anticancer Res. 2014;34:665-9.

Tian L, Fang YX, Xue JL, Chen JZ. Four microRNAs promote prostate cell proliferation with regulation of PTEN and its downstream signals in vitro. PLoS One. 2013;8:e75885.

https://doi.org/10.1371/journal.pone.0075885

Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 2014;66:550-60.

https://doi.org/10.1016/j.eururo.2014.05.004

Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J, et al. A Biopsy-based 17-gene Genomic Prostate Score Predicts Recurrence After Radical Prostatectomy and Adverse Surgical Pathology in a Racially Diverse Population of Men with Clinically Low- and Intermediate-risk Prostate Cancer. Eur Urol. 2014.

https://doi.org/10.1016/j.eururo.2014.11.030

Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 2011;12:245-55.

https://doi.org/10.1016/S1470-2045(10)70295-3

Cooperberg MR, Simko JP, Cowan JE, Reid JE, Djalilvand A, Bhatnagar S, et al. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol. 2013;31:1428-34.

https://doi.org/10.1200/JCO.2012.46.4396

Gasi Tandefelt D, Boormans JL, van der Korput HA, Jenster GW, Trapman J. A 36-gene signature predicts clinical progression in a subgroup of ERG-positive prostate cancers. Eur Urol. 2013;64:941-50.

https://doi.org/10.1016/j.eururo.2013.02.039

Talantov D, Jatkoe TA, Bohm M, Zhang Y, Ferguson AM, Stricker PD, et al. Gene based prediction of clinically localized prostate cancer progression after radical prostatectomy. J Urol. 2010;184:1521-8.

https://doi.org/10.1016/j.juro.2010.05.084

Irshad S, Bansal M, Castillo-Martin M, Zheng T, Aytes A, Wenske S, et al. A molecular signature predictive of indolent prostate cancer. Sci Transl Med. 2013;5, 202ra122.

https://doi.org/10.1126/scitranslmed.3006408

Liong ML, Lim CR, Yang H, Chao S, Bong CW, Leong WS, et al. Blood-based biomarkers of aggressive prostate cancer. PLoS One. 2012;7:e45802.

https://doi.org/10.1371/journal.pone.0045802

Chen X, Xu S, McClelland M, Rahmatpanah F, Sawyers A, Jia Z, et al. An accurate prostate cancer prognosticator using a seven-gene signature plus Gleason score and taking cell type heterogeneity into account. PLoS One. 2012;7:e45178.

https://doi.org/10.1371/journal.pone.0045178

Pontes-Junior J, Reis ST, Dall'Oglio M, Neves de Oliveira LC, Cury J, Carvalho PA, et al. Evaluation of the expression of integrins and cell adhesion molecules through tissue microarray in lymph node metastases of prostate cancer. J Carcinog. 2009;8:3.

https://doi.org/10.4103/1477-3163.48453

Tsai YS, Lai CL, Lai CH, Chang KH,Wu K, Tseng SF, et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget. 2014;5:6425-36.

https://doi.org/10.18632/oncotarget.2228

García-Galiano D, Navarro VM, Gaytan F, Tena-Sempere M. Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. J Mol Endocrinol. 2010;45:281-90.

https://doi.org/10.1677/JME-10-0059

Kalnina Z, Silina K, Bruvere R, Gabruseva N, Stengrevics A, Barnikol-Watanabe S, et al. Molecular characterisation and expression analysis of SEREX-defined antigen NUCB2 in gastric epithelium, gastritis and gastric cancer. Eur J Histochem. 2009;53:7-18.

https://doi.org/10.4081/ejh.2009.e2

Suzuki S, Takagi K, Miki Y, Onodera Y, Akahira J, Ebata A, et al. Nucleobindin 2 in human breast carcinoma as a potent prognostic factor. Cancer Sci. 2012;103:136-43.

https://doi.org/10.1111/j.1349-7006.2011.02119.x

Stros M, Ozaki T, Bacikova A, Kageyama H, Nakagawara A. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem. 2002;277:7157-64.

https://doi.org/10.1074/jbc.M110233200

Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405:354-60.

https://doi.org/10.1038/35012626

Bhattacharyya S, Solakyildirim K, Zhang Z, Linhardt RJ, Tobacman JK. Chloroquine reduces arylsulphatase B activity and increases chondroitin-4-sulphate: implications for mechanisms of action and resistance. Malar J. 2009;8:303.

https://doi.org/10.1186/1475-2875-8-303

Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846-56.

https://doi.org/10.1038/nrc1991

Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1-2):21-9.

https://doi.org/10.1016/j.mrfmmm.2008.07.010

Gómez-Ruiz M, Hernández M, de Miguel R, Ramos JA. An overview on the biochemistry of the cannabinoid system. Mol Neurobiol. 2007;36:3-14.

https://doi.org/10.1007/s12035-007-0015-0

Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M, et al. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology. 2000;141:118-26.

https://doi.org/10.1210/endo.141.1.7239

Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, et al. PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol. 2015;5:24.

https://doi.org/10.3389/fonc.2015.00024

Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, et al. Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol. 2009;185:577-86.

https://doi.org/10.1083/jcb.200810035

Perbal B. The CCN family of genes: a brief history. Mol Pathol. 2001;54:103-4.

https://doi.org/10.1136/mp.54.2.103

Sun ZJ, Wang Y, Cai Z, Chen PP, Tong XJ, Xie D. Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br J Cancer. 2008;99:1656-67.

https://doi.org/10.1038/sj.bjc.6604712

Takash W, Ca˜nizares J, Bonneaud N, Poulat F, Mattéi MG, Jay P, et al. SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling. Nucleic Acids Res. 2001;29:4274-83.

https://doi.org/10.1093/nar/29.21.4274

Guo L, Zhong D, Lau S, Liu X, Dong XY, Sun X, et al. Sox7 Is an independent checkpoint for beta-catenin function in prostate and colon epithelial cells. Mol Cancer Res. 2008;6:1421-30.

https://doi.org/10.1158/1541-7786.MCR-07-2175

Zhou J, Ding D, Wang M, Cong YS. Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep. 2014;47:8-14.

https://doi.org/10.5483/BMBRep.2014.47.1.284

Truninger K, Ammann RW, Blum HE, Witt H. Genetic aspects of chronic pancreatitis: insights into aetiopathogenesis and clinical implications. Swiss Med Wkly. 2001;131(39-40):565-74.

Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005-17.

https://doi.org/10.1016/j.cell.2009.04.021

Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26:7590-5.

https://doi.org/10.1038/sj.onc.1210564

Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009;23:1327-37.

https://doi.org/10.1101/gad.1777409

Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol. 2011;29:367-73.

https://doi.org/10.1007/s00345-010-0633-4

Cómo citar

[1]
Acosta, N. et al. 2017. Biomarcadores de pronóstico en pacientes con cáncer de próstata localizado. Revista Colombiana de Cancerología. 21, 2 (jun. 2017), 113–125. DOI:https://doi.org/10.35509/01239015.201.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

01-06-2017

Número

Sección

Artículos de revisión
Crossref Cited-by logo