Tamización de cáncer de pulmón

Autores/as

DOI:

https://doi.org/10.35509/01239015.872

Palabras clave:

neoplasias pulmonares, tamizaje masivo, tomografía, factores de riesgo

Resumen

Revisión narrativa sobre la tamización de cáncer de pulmón abarcando su evolución, sus beneficios, efectos adversos, las barreras a la implementación, cómo funcionan los programas de tamización y recomendaciones mirando al futuro de los programas de tamización.

Biografía del autor/a

Juan David Botero-Bahamón, Unidad de Neumología, Clínica Cardiovid, Medellín, Colombia.

1. Unidad de Neumología, Clínica Cardiovid, Medellín, Colombia.

Alejandra Cañas-Arboleda, Servicio de Medicina Interna, Hospital Universitario San Ignacio, Bogotá, D.C., Colombia.

2. Servicio de Medicina Interna, Hospital Universitario San Ignacio, Bogotá, D.C., Colombia.

3. Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia.

Paulina Oliveros-Metrio, Servicio de Urgencias, Clínica El Rosario, Medellín, Colombia.

4. Servicio de Urgencias, Clínica El Rosario, Medellín, Colombia.

Referencias bibliográficas

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21551

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660

Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open. 2021;4(4):e214708. https://doi.org/10.1001/jamanetworkopen.2021.4708

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7-30. https://doi.org/10.3322/caac.21442

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. https://doi.org/10.3322/caac.21654

Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest. 2003;123(1_Suppl):21S-49S. https://doi.org/10.1378/chest.123.1_suppl.21s

Herald C. Cancer by the Carton. Reader’s Digest.1952 october. p. 7-8. Available from: https://csts.ua.edu/files/2019/01/1952-12-Readers-Digest-Cancer-by-the-Carton.pdf

US Department of Health, Education, and Welfare. Smoking and health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington, DC: US Department of Health, Education, and Welfare; Public Health Service Publication No. 1103; 1964. 386 p. Available from: https://www.govinfo.gov/content/pkg/GPO-SMOKINGANDHEALTH/pdf/GPO-SMOKINGANDHEALTH.pdf

Tindle HA, Stevenson Duncan M, Greevy RA, Vasan RS, Kundu S, Massion PP, et al. Lifetime smoking history and risk of lung cancer: Results from the Framingham Heart Study. J Natl Cancer Inst. 2018;110(11): djy041. https://doi.org/10.1093/jnci/djy041

Warner KE, Mendez D. Tobacco control policy in developed countries: Yesterday, today, and tomorrow. Nicotine Tob Res. 2010;12(9):876-87. https://doi.org/10.1093/ntr/ntq125

van der Aalst CM, van Klaveren RJ, van den Bergh KAM, Willemsen MC, de Koning HJ. The impact of a lung cancer computed tomography screening result on smoking abstinence. Eur Respir J. 2011;37(6):1466-73. https://doi.org/10.1183/09031936.00035410

van der Aalst CM, van den Bergh KAM, Willemsen MC, de Koning HJ, van Klaveren RJ. Lung cancer screening and smoking abstinence: 2 year follow-up data from the Dutch-Belgian randomised controlled lung cancer screening trial. Thorax. 2010;65(7):600-5. https://doi.org/10.1136/thx.2009.133751

Brain K, Carter B, Lifford KJ, Burke O, Devaraj A, Baldwin DR, et al. Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer Screening Trial. Thorax. 2017;72(10):912-8. https://doi.org/10.1136/thoraxjnl-2016-209690

Buitrago G, Amaya-Nieto J, Torres GF. Prevalence of lung cancer in Colombia and a new diagnostic algorithm using health administrative databases: A real-world evidence study. J Clin Oncol. 2021;39(15_Suppl):e18764-e18764. https://doi.org/10.1200/JCO.2021.39.15_suppl.e18764

Pardo C, de Vries E, Buitrago L, Gamboa O. Atlas de mortalidad por cáncer en Colombia. 4a ed. Bogotá, D.C.: Instituto Nacional de Cancerología, 2017. v.1. p. 124.Disponible en: https://www.ins.gov.co/TyS/programas-de-calidad/Documentos%20Programa%20EEDDCARIO/ATLAS_de_Mortalidad_por_cancer_en_Colombia.pdf

DANE. Encuesta Nacional de Consumo de Sustancias Psicoactivas (ENCSPA). Periodo de referencia 2019. Boletín técnico. Disponible en: https://www.dane.gov.co/files/investigaciones/boletines/encspa/bt-encspa-2019.pdf

Peña-Torres E, Osorio D, Gamboa Ó, Caporale J, Augustovski F, Alcaraz A, et al. Carga de enfermedad atribuible al uso de tabaco en Colombia y potenciales beneficios sanitarios y económicos del aumento del precio del cigarrillo mediante impuestos. Rev Colomb Cancerol. 2019;23(4):135-43. https://doi.org/10.35509/01239015.31

Cole P, Morrison AS. Basic issues in population screening for cancer. J Natl Cancer Inst. 1980;64(5):1263-72. https://doi.org/10.1093/jnci/64.5.1263

Flehinger BJ, Kimmel M, Polyak T, Melamed MR. Screening for lung cancer: The Mayo Lung Project revisited. Cancer. 1993;72(5):1573-80. https://doi.org/10.1002/1097-0142(19930901)72:5<1573::AID-CNCR2820720514>3.0.CO;2-9

Brett GZ. Earlier diagnosis and survival in lung cancer. Br Med J. 1969;4(5678):260-2. https://doi.org/10.1136/bmj.4.5678.260

Brett GZ. The value of lung cancer detection by six-monthly chest radiographs. Thorax. 1968;23(4):414-20. http://dx.doi.org/10.1136/thx.23.4.414

Berlin NI, Buncher CR, Fontana RS, Frost JK, Melamed MR. The National Cancer Institute Cooperative Early Lung Cancer Detection Program: Results of the initial screen (prevalence). Am Rev Respir Dis. 1984;130(5):545-49. https://doi.org./10.1164/arrd.1984.130.4.545

Marcus PM, Bergstralh EJ, Fagerstrom RM, Williams DE, Fontana R, Taylor WF, et al. Lung cancer mortality in the Mayo Lung Project: Impact of extended follow-up. J Natl Cancer Inst. 2000;92(16):1308-16. https://doi.org/10.1093/jnci/92.16.1308

Marcus PM, Bergstralh EJ, Zweig MH, Harris A, Offord KP, Fontana RS. Extended lung cancer incidence follow-up in the Mayo Lung Project and overdiagnosis. J Natl Cancer Inst. 2006;98(11):748-56. https://doi.org/10.1093/jnci/djj207

Oken MM, Hocking WG, Kvale PA, Andriole GL, Buys SS, Church TR, et al. Screening by chest radiograph and lung cancer mortality: The Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial. JAMA. 2011;306(17):1865-73. https://doi.org/10.1001/jama.2011.1591

Fintelmann FJ, Bernheim A, McLoud TC. Brief history of lung cancer screening including the National Lung Screening Trial. Semin Roentgenol. 2017;52(3):125-8. https://doi.org/10.1053/j.ro.2017.06.006

The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395-409. https://doi.org/10.1056/NEJMoa1102873

Becker N, Motsch E, Gross ML, Eigentopf A, Heussel CP, Dienemann H, et al. Randomized study on early detection of lung cancer with MSCT in Germany: Results of the first 3 years of follow-up after randomization. J Thorac Oncol. 2015;10(6):890-6. https://doi.org/10.1097/JTO.0000000000000530

Pastorino U, Silva M, Sestini S, Sabia F, Boeri M, Cantarutti A, et al. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: New confirmation of lung cancer screening efficacy. Ann Oncol. 2019;30(7):1162-9. https://doi.org/10.1093/annonc/mdz117

Infante M, Cavuto S, Lutman FR, Passera E, Chiarenza M, Chiesa G, et al. Long-term follow-up results of the DANTE Trial, a randomized study of lung cancer screening with spiral computed tomography. Am J Respir Crit Care Med. 2015;191(10):1166-75. https://doi.org/10.1164/rccm.201408-1475OC

Wille MMW, Dirksen A, Ashraf H, Saghir Z, Bach KS, Brodersen J, et al. Results of the Randomized Danish Lung Cancer Screening Trial with focus on high-risk profiling. Am J Respir Crit Care Med. 2016;193(5):542-51. https://doi.org/10.1164/rccm.201505-1040OC

de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503-13. https://doi.org/10.1056/NEJMoa1911793

Fintelmann FJ, Bernheim A, Digumarthy SR, Lennes IT, Kalra MK, Gilman MD, et al. The 10 pillars of lung cancer screening: Rationale and logistics of a lung cancer screening program. RadioGraphics. 2015;35(7):1893-908. https://doi.org/10.1148/rg.2015150079

Veronesi G, Maisonneuve P, Spaggiari L, Rampinelli C, Pardolesi A, Bertolotti R, et al. Diagnostic performance of low-dose computed tomography screening for lung cancer over five years. J Thorac Oncol. 2014;9(7):935-9. https://doi.org/10.1097/JTO.0000000000000200

Heinke MY, Vinod SK. A review on the impact of lung cancer multidisciplinary care on patient outcomes. Transl Lung Cancer Res. 2020;9(4):1639-53. https://doi.org/10.21037/tlcr.2019.11.03

Ministerio de Salud y Protección Social. Resolución 1477 de 2016 (22 abril), “por la cual se define el procedimiento, los estándares y los criterios para la habilitación de las Unidades Funcionales para la Atención Integral de Cáncer del Adulto "UFCA" y de las Unidades de Atención de Cáncer Infantil "UACAI" y se dictan otras disposiciones”. Bogotá, D.C.;2016. Disponible en: https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%201477%20de%202016.pdf

Jacobs CD, Jafari ME. Early results of lung cancer screening and radiation dose assessment by low-dose CT at a community hospital. Clin Lung Cancer. 2017;18(5):e327-e331. https://doi.org/10.1016/j.cllc.2017.01.011

Kinsinger LS, Anderson C, Kim J, Larson M, Chan SH, King HA, et al. Implementation of lung cancer screening in the Veterans Health Administration. JAMA Intern Med. 2017;177(3):399-406. https://doi.org/10.1001/jamainternmed.2016.9022

Pinsky PF, Bellinger CR, Miller DP. False-positive screens and lung cancer risk in the National Lung Screening Trial: Implications for shared decision-making. J Med Screen. 2018;25(2):110-2. https://doi.org/10.1177/0969141317727771

Hammer MM, Byrne SC, Kong CY. Factors Influencing the False Positive Rate in CT Lung Cancer Screening. Acad Radiol. 2020;29(Suppl. 2):S18-S22. https://doi.org/10.1016/j.acra.2020.07.040

Huo J, Shen C, Volk RJ, Tina YC. Use of CT and chest radiography for lung cancer screening before and after publication of screening guidelines: Intended and unintended uptake. JAMA Intern Med. 2017;177(3):439-41. https://doi.org/10.1001/jamainternmed.2016.9016

Rasmussen JF, Siersma V, Malmqvist J, Brodersen J. Psychosocial consequences of false positives in the Danish Lung Cancer CT Screening Trial: a nested matched cohort study. BMJ Open. 2020;10(6):e034682. http://dx.doi.org/10.1136/bmjopen-2019-034682

Croswell JM, Baker SG, Marcus PM, Clapp JD, Kramer BS. Cumulative incidence of false-positive test results in lung cancer screening. 2010;152(13):505-12. https://doi.org/10.7326/0003-4819-152-8-201004200-00007

Jonas DE, Reuland DS, Reddy SM, Nagle M, Clark SD, Palmieri R, et al. Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2021;325(10):971-87. https://doi.org/10.1001/jama.2021.0377

Hoffman RM, Atallah RP, Struble RD, Badgett RG. Lung cancer screening with low-dose CT: A meta-analysis. J Gen Intern Med. 2020;35(10):3015-25. https://doi.org/10.1007/s11606-020-05951-7

Kaminetzky M, Milch HS, Shmukler A, Kessler A, Peng R, Mardakhaev E, et al. Effectiveness of lung-RADS in reducing false-positive results in a diverse, underserved, urban lung cancer screening cohort. J Am Coll Radiol. 2019;16(4):419-26. https://doi.org/10.1016/j.jacr.2018.07.011

Karush J, Arndt A, Shah P, Geissen N, Dowling L, Levitan A, et al. Improved false-positive rates and the overestimation of unintended harm from lung cancer screening. Lung. 2019;197(3):327-32. https://doi.org/10.1007/s00408-019-00217-4

Du Y, Sidorenkov G, Heuvelmans MA, Groen HJM, Vermeulen KM, Greuter MJW, et al. Cost-effectiveness of lung cancer screening with low-dose computed tomography in heavy smokers: A microsimulation modelling study. Eur J Cancer. 2020;135:121-9. https://doi.org/10.1016/j.ejca.2020.05.004

Criss SD, Cao B, Bastani M, Haaf Kt, Chen Y, Sheehan DF, et al. Cost-effectiveness analysis of lung cancer screening in the United States: A comparative modeling study. Ann Intern Med. 2019;171(11):796-804. https://doi.org/10.7326/M19-0322

Gómez-Carballo N, Fernández-Soberón S, Rejas-Gutiérrez J. Cost-effectiveness analysis of a lung cancer screening programme in Spain. Eur J Cancer Prev. 2021; 31:235-244. https://doi.org/10.1097/CEJ.0000000000000700

McLeod M, Sandiford P, Kvizhinadze G, Bartholomew K, Crengle S. Impact of low-dose CT screening for lung cancer on ethnic health inequities in New Zealand: A cost-effectiveness analysis. BMJ Open. 2020;10(9):e037145. https://doi.org/10.1136/bmjopen-2020-037145

Griffin E, Hyde C, Long L, Varley-Campbell J, Coelho H, Robinson S, et al. Lung cancer screening by low-dose computed tomography: a cost-effectiveness analysis of alternative programmes in the UK using a newly developed natural history-based economic model. Diagn Progn Res. 2020;4(1):20. https://doi.org/10.1186/s41512-020-00087-y

Diaz M, Garcia M, Vidal C, Santiago A, Gnutti G, Gómez D, et al. Health and economic impact at a population level of both primary and secondary preventive lung cancer interventions: A model-based cost-effectiveness analysis. Lung Cancer. 2021;159:153-61. https://doi.org/10.1016/j.lungcan.2021.06.027

Jaklitsch MT, Jacobson FL, Austin JHM, Field JK, Jett JR, Keshavjee S, et al. The American Association for Thoracic Surgery Guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups. J Thorac Cardiovasc Surg. 2012;144(1):33-8. https://doi.org/10.1016/j.jtcvs.2012.05.060

Zhou Q, Fan Y, Bu H, Wang Y, Wu N, Huang Y, et al. China National Lung Cancer Screening Guideline with low‐dose computed tomography (2015 version). Thorac Cancer. 2015;6(6):812-8. https://doi.org/10.1111/1759-7714.12287

National Comprehensive Cancer Network. NCCN lung cancer screening guideline 2022. 2021. Available from: https://www.nccn.org/professionals/physician_gls/pdf/lung_screening.pdf

Wender R, Fontham ETH, Barrera E, Colditz GA, Church TR, Ettinger DS, et al. American Cancer Society lung cancer screening guidelines. CA Cancer J Clin. 2013;63(2):107-17. https://doi.org/10.3322/caac.21172

Koegelenberg CFN, Dorfman S, Schewitz I, Richards GA, Maasdorp S, Smith C, et al. Recommendations for lung cancer screening in Southern Africa. J Thorac Dis. 2019;11(9):3696-703. https://doi.org/10.21037/jtd.2019.08.66

Canadian Task Force on Preventive Health Care. Recommendations on screening for lung cancer. Can Med Assoc J. 2016;188(6):425-32. https://doi.org/10.1503/cmaj.151421

Mazzone PJ, Silvestri GA, Souter LH, Caverly TJ, Kanne JP, Katki HA, et al. Screening for lung cancer. Chest.2021;160(5):e427-94. https://doi.org/10.1016/j.chest.2021.06.063

Ministerio de Salud y Protección Social. Departamento Administrativo de Ciencia, Tecnología e Innovación en Salud – COLCIENCIAS. Guía de práctica clínica para la detección temprana, diagnóstico, estadificación y tratamiento del cáncer de pulmón. Bogotá, D.C.: Ministerio de Salud y Protección Social; 2014. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/gatiso-cancer-pulmon.pdf

Ministerio de Salud y Protección Social, Departamento Administrativo de Ciencia, Tecnología e Innovación en Salud – COLCIENCIAS. Guía de práctica clínica (GPC) para la detección temprana, diagnóstico, tratamiento, seguimiento y rehabilitación de pacientes con diagnóstico de cáncer de colon y recto. Bogotá, D.C.: Ministerio de Salud y Protección Social; 2013. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IETS/gpc-completa-ca-colon.pdf

Torres GF, Amaya JA, Buitrago G. Attributable costs of lung cancer for the Colombian Health System: A cost-of-illness study. Value Health Reg Issues. 2022;30:120-6. https://doi.org/10.1016/j.vhri.2022.02.004

The National Lung Screening Trial Research Team. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368(21):1980-91. https://doi.org/10.1056/NEJMoa1209120

Carter BW, Lichtenberger JP, Shroff GS, Wu CC. Lung Computed Tomography Screening Reporting and Data System Version 1.0. Semin Roentgenol. 2017;52(3):137-42. https://doi.org/10.1053/j.ro.2017.06.009

Kastner J, Hossain R, Jeudy J, Dako F, Mehta V, Dalal S, et al. Lung-RADS Version 1.0 versus Lung-RADS Version 1.1: Comparison of categories using nodules from the National Lung Screening Trial. Radiology. 2021;300(1):199-206. https://doi.org/10.1148/radiol.2021203704

Dyer SC, Bartholmai BJ, Koo CW. Implications of the updated Lung CT Screening Reporting and Data System (Lung-RADS version 1.1) for lung cancer screening. J Thorac Dis. 2020;12(11):6966-77. https://doi.org/10.21037/jtd-2019-cptn-02

American College of Radiology Committee on Lung-RADS®. Lung-RADS assessment categories 2022. Available from: https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/Lung-RADS-2022.pdf

Ru Zhao Y, Xie X, de Koning HJ, Mali WP, Vliegenthart R, Oudkerk M. NELSON lung cancer screening study. Cancer Imaging. 2011;11(1A): S79-84. https://doi.org/10.1102/1470-7330.2011.9020

Jemal A, Miller KD, Ma J, Siegel RL, Fedewa SA, Islami F, et al. Higher lung cancer incidence in young women than young men in the United States. N Engl J Med. 2018;378(21):1999-2009. https://doi.org/10.1056/NEJMoa1715907

Bracken-Clarke D, Kapoor D, Baird AM, Buchanan PJ, Gately K, Cuffe S, et al. Vaping and lung cancer – A review of current data and recommendations. Lung Cancer. 2021;153:11-20. https://doi.org/10.1016/j.lungcan.2020.12.030

Niederbacher N, Bermudez LG, González DM, Bernal C, García F, León D, et al. Electronic cigarettes: Genetic and epigenetic impact (Review). Int J Epigenetics. 2021;1(2):1-10. https://doi.org/10.3892/ije.2021.2

Xie Z, Rahman I, Goniewicz ML, Li D. Perspectives on epigenetics alterations associated with smoking and vaping. Function. 2021;2(3): zqab022. https://doi.org/10.1093/function/zqab022

Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: Theory and practice. Radiology. 2017;284:630-44. https://doi.org/10.1148/radiol.2017151022

Liang F, Li C, Fu X. Evaluation of the effectiveness of artificial intelligence chest CT lung nodule detection based on deep learning. J Healthc Eng. 2021;2021:1-10. https://doi.org/10.1155/2021/9971325

Han D, Heuvelmans MA, Oudkerk M. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl Lung Cancer Res. 2017;6(1):52-61. https://doi.org/10.21037/tlcr.2017.01.05

Nasrullah N, Sang J, Alam MS, Mateen M, Cai B, Hu H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors. 2019;19(17):3722. https://doi.org/10.3390/s19173722

Freedman MT, Lo SCB, Seibel JC, Bromley CM. Lung nodules: improved detection with software that suppresses the rib and clavicle on chest radiographs. Radiology. 2011;260(1):265-73. https://doi.org/10.1148/radiol.11100153/-/DC1

de Hoop B, Gietema H, van Ginneken B, Zanen P, Groenewegen G, Prokop M. A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: What is the minimum increase in size to detect growth in repeated CT examinations. Eur Radiol. 2009;19(4):800-8. https://doi.org/10.1007/s00330-008-1229-x

Zhao YR, Ooijen PM van, Dorrius MD, Heuvelmans M, Bock GH de, Vliegenthart R, et al. Comparison of three software systems for semi-automatic volumetry of pulmonary nodules on baseline and follow-up CT examinations. Acta Radiol. 2014;55(6):691-8. https://doi.org/10.1177/0284185113508177

Ather S, Kadir T, Gleeson F. Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications. Clin Radiol. 2020;75(1):13–19. https://doi.org/10.1016/j.crad.2019.04.017

Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020;123:108774. https://doi.org/10.1016/j.ejrad.2019.108774

White CS, Pugatch R, Koonce T, Rust SW, Dharaiya E. Lung Nodule CAD Software as a second reader. Acad Radiol. 2008;15(3):326-33. https://doi.org/10.1016/j.acra.2007.09.027

Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954-61. https://doi.org/10.1038/s41591-019-0447-x

Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep. 2017;7(1):46479. https://doi.org/10.1038/srep46479

Park S, Lee SM, Lee KH, Jung KH, Bae W, Choe J, et al. Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings. Eur Radiol. 2020;30(3):1359-68. https://doi.org/10.1007/s00330-019-06532-x

Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol. 2020;196(10):879-87. https://doi.org/10.1007/s00066-020-01625-9

Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. 2019;53(3):1800986. https://doi.org/10.1183/13993003.00986-2018

Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. Butte AJ, editor. PLOS Med. 2018;15(11):e1002711. https://doi.org/10.1371/journal.pmed.1002711

Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res. 2019;25(11):3266–75. https://doi.org/10.1158/1078-0432.CCR-18-2495

Jones CM, Danaher L, Milne MR, Tang C, Seah J, Oakden-Rayner L, et al. Assessment of the effect of a comprehensive chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study. BMJ Open. 2021;11(12):e052902. https://doi.org/10.1136/bmjopen-2021-052902

Pham D, Bhandari S, Pinkston C, Oechsli M, Kloecker G. Lung Cancer Screening Registry reveals low-dose CT screening remains heavily underutilized. Clin Lung Cancer. 2020;21(3):e206-11. https://doi.org/10.1016/j.cllc.2019.09.002

Bartlett EC, Kemp SV, Ridge CA, Desai SR, Mirsadraee S, Morjaria JB, et al. Baseline Results of the West London lung cancer screening pilot study – Impact of mobile scanners and dual risk model utilisation. Lung Cancer. octubre de 2020;148:12-9. https://doi.org/10.1016/j.lungcan.2020.07.027

Ghimire B, Maroni R, Vulkan D, Shah Z, Gaynor E, Timoney M, et al. Evaluation of a health service adopting proactive approach to reduce high risk of lung cancer: The Liverpool Healthy Lung Programme. Lung Cancer. 2019;134:66-71. https://doi.org/10.1016/j.lungcan.2019.05.026

Crosbie PA, Balata H, Evison M, Atack M, Bayliss-Brideaux V, Colligan D, et al. Implementing lung cancer screening: baseline results from a community-based ‘Lung Health Check’ pilot in deprived areas of Manchester. Thorax. 2019;74(4):405-9. https://doi.org/10.1136/thoraxjnl-2017-211377

Coughlin JM, Zang Y, Terranella S, Alex G, Karush J, Geissen N, et al. Understanding barriers to lung cancer screening in primary care. J Thorac Dis. 2020;12(5):2536-44. https://doi.org/10.21037/jtd.2020.03.66

Wang GX, Baggett TP, Pandharipande PV, Park ER, Percac-Lima S, Shepard JAO, et al. Barriers to lung cancer screening engagement from the patient and provider perspective. Radiology. 2019;290(2):278-87. https://doi.org/10.1148/radiol.2018180212

Kunitomo Y, Bade B, Gunderson CG, Akgün KM, Brackett A, Cain H, et al. Racial differences in adherence to lung cancer screening follow-up. Chest. 2022;161(1):266-75. https://doi.org/10.1016/j.chest.2021.07.2172

Schütte S, Dietrich D, Montet X, Flahault A. Participation in lung cancer screening programs: are there gender and social differences? A systematic review. Public Health Rev. 2018;39:23. https://doi.org/10.1186/s40985-018-0100-0

McRonald FE, Yadegarfar G, Baldwin DR, Devaraj A, Brain KE, Eisen T, et al. The UK Lung Screen (UKLS): demographic profile of first 88,897 approaches provides recommendations for population screening. Cancer Prev Res (Phila). 2014;7(3):362-71. https://doi.org/10.1158/1940-6207.CAPR-13-0206

Ali N, Lifford KJ, Carter B, McRonald F, Yadegarfar G, Baldwin DR, et al. Barriers to uptake among high-risk individuals declining participation in lung cancer screening: a mixed methods analysis of the UK Lung Cancer Screening (UKLS) trial. BMJ Open. 2015;5(7):e008254. https://doi.org/10.1136/bmjopen-2015-008254

Lei F, Lee E. Barriers to lung cancer screening with low-dose computed tomography. Oncol Nurs Forum. 2019;46: E60-71. https://doi.org/10.1188/19.ONF.E60-E71

Hughes BD, Maharsi S, Obiarinze RN, Mehta HB, Nishi S, Okereke IC. Correlation between air quality and lung cancer incidence: A county by county analysis. Surgery. 2019;166(6):1099-104. https://doi.org/10.1016/j.surg.2019.05.036

Barbone F, Barbiero F, Belvedere O, Rosolen V, Giangreco M, Zanin T, et al. Impact of low-dose computed tomography screening on lung cancer mortality among asbestos-exposed workers. Int J Epidemiol. 2018;47(6):1981-91. https://doi.org/10.1093/ije/dyy212

Maisonneuve P, Rampinelli C, Bertolotti R, Misotti A, Lococo F, Casiraghi M, et al. Low-dose computed tomography screening for lung cancer in people with workplace exposure to asbestos. Lung Cancer. 2019;131:23-30. https://doi.org/10.1016/j.lungcan.2019.03.003

Kakinuma R, Muramatsu Y, Asamura H, Watanabe S ichi, Kusumoto M, Tsuchida T, et al. Low-dose CT lung cancer screening in never-smokers and smokers: results of an eight-year observational study. Transl Lung Cancer Res. 2020;9(1):10-22. https://doi.org/10.21037/tlcr.2020.01.13

Kang HR, Cho JY, Lee SH, Lee YJ, Park JS, Cho YJ, et al. Role of low-dose computerized tomography in lung cancer screening among never-smokers. J Thorac Oncol. 2019;14(3):436-44. https://doi.org/10.1016/j.jtho.2018.11.002

Luo X, Zheng S, Liu Q, Wang S, Li Y, Shen L, et al. Should nonsmokers be excluded from early lung cancer screening with low-dose spiral computed tomography? Community-based practice in Shanghai. Transl Oncol. 2017;10(4):485-90. https://doi.org/10.1016/j.tranon.2017.02.002

Kowada A. Cost-effectiveness and health impact of lung cancer screening with low-dose computed tomography for never smokers in Japan and the United States: a modelling study. BMC Pulm Med. 2022;22(1):19. https://doi.org/10.1186/s12890-021-01805-y

Yang P. PS01.02 National Lung Cancer Screening Program in Taiwan: The TALENT Study. J Thorac Oncol. 2021;16(3):S58. https://doi.org/10.1016/j.jtho.2021.01.318

Triphuridet N, Henschke C. Landscape on CT screening for lung cancer in Asia. Lung Cancer (Auckl). 2019;10:107-24. https://doi.org/10.2147/LCTT.S192643

Liu D, Sun X, Liu A, Li L, Li S, Li J, et al. Predictive value of a novel Asian lung cancer screening nomogram based on artificial intelligence and epidemiological characteristics. Thorac Cancer. 2021;12(23):3130-40. https://doi.org/10.1111/1759-7714.14140

O’Dwyer E, Halpenny DF, Ginsberg MS. Lung cancer screening in patients with previous malignancy: Is this cohort at increased risk for malignancy? Eur Radiol. 2021;31(1):458–67. https://doi.org/10.1007/s00330-020-07026-x

Corrales L, Rosell R, Cardona AF, Martín C, Zatarain-Barrón ZL, Arrieta O. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit Rev Oncol Hematol. 2020;148:102895. https://doi.org/10.1016/j.critrevonc.2020.102895

Cómo citar

[1]
Botero Bahamón, J.D. et al. 2023. Tamización de cáncer de pulmón. Revista Colombiana de Cancerología. 27, 1 (mar. 2023), 126–139. DOI:https://doi.org/10.35509/01239015.872.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

30-03-2023

Número

Sección

Artículos de revisión
Crossref Cited-by logo