Hibridación in situ fluorescente (FISH) en el Instituto Nacional de Cancerología (INC) de Colombia. Experiencia de 5 años

Autores/as

  • Tatiana Roncancio-Velandia Laboratorio de Genética y Oncología Molecular, Instituto Nacional de Cancerología, Bogotá D. C., Colombia
  • Rafael Parra-Medina Instituto de investigación, Departamento de Patología, Fundación Universitaria de Ciencias de la Salud, Bogotá D. C., Colombia
  • Juan Carlos Mejia Departamento de Patología, Instituto Nacional de Cancerología, Bogotá D. C., Colombia
  • Gonzalo Guevara Pardo Departamento de Patología, Instituto Nacional de Cancerología, Bogotá D. C., Colombia

DOI:

https://doi.org/10.35509/01239015.73

Palabras clave:

FISH, Hibridación, Linfomas, Leucemia, Sarcomas, HER2

Resumen

Introducción: La hibridación in situ fluorescente (FISH) es una herramienta fundamental en oncopatología para confirmar el diagnóstico de algunas patologías, al igual que determinar el pronóstico y el tratamiento.
Objetivo: Describir la experiencia del Instituto Nacional de Cancerología de Colombia (INC) con la técnica de FISH en las diferentes neoplasias hematológicas y tumores sólidos para conocer el comportamiento molecular de nuestra población.
Materiales y métodos: Se realizó un estudio descriptivo retrospectivo de todos los resultados de FISH que se han realizado en tumores hematológicos y tumores sólidos en el laboratorio de Genética y Oncología Molecular del INC, entre 2012 y 2016.
Resultados: En total se realizaron 1.713 pruebas de FISH, 1.010 (59%) fueron desarrolladas en neoplasias de origen hematolinfoide y 703 (41%) en tumores sólidos, de estos 428 (61%) correspondieron para HER2 de cáncer de seno. En tumores de tejidos blandos fueron evaluadas las sondas MDM2/CDK4, EWSR1, SS18, FUS, CHOP observando positividad en el 10%, el 43%, el 44%, el 20% y el 63%, respectivamente. En cáncer de pulmón se observó positividad en el 12%. Además se realizó estudios para la detección de melanoma y para la detección la codeleción del 1p/19q en gliomas.
Discusión: En el INC de Colombia se confirmó la utilidad de la técnica de FISH como complemento en el diagnóstico, el pronóstico y el factor predictivo en el manejo de pacientes con cáncer. Observamos que la prevalencia de algunas pruebas varían de la reportadas en la literatura médica (C-MYC para linfomas, ALK para cáncer de pulmón).

Referencias bibliográficas

John HA, Birnstiel ML, Jones KW. RNA-DNA hybrids at the cytological level. Nature. 1969;223(5206):582–7.

Pardue ML, Gall JG. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A. 1969;64(2):600–4.

Cui C, Shu W, Li P. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications. Front cell Dev Biol. 2016;4:89.

Kearney L, Shipley J. Fluorescence in situ hybridization for cancer-related studies. Methods Mol Biol. 2012;878:149–74.

Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res. 2014;2(1):3.

McGowan-Jordan J, Simons A, Schmid M. ISCN : an international system for human cytogenomic nomenclature (2016). 2016.

Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.

Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33(12):1783–8.

Parra-Medina R, Roncancio T, Morales SD. Spitzoid Melanoma with Touton-Like , osteoclast-Like and Foreign Body Giant Cells in a 15-Year-old Girl -. Int J Case Rep Short Rev. 2017;3(4):67–70.

Rajan AM, Rajkumar SV. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. Nature Publishing Group; 2015;5(10):1–7.

Kumar SK, Mikhael JR, Buadi FK, Dingli D, Dispenzieri A, Fonseca R, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin Proc. 2009;84(12):1095–110.

Rajkumar SV. Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management. Am J Hematol. 2012;87(1):78–88.

Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64(4):1546–58.

Costa D, Vidal A, Carrió A, Muñoz C, Arias A, Gómez C, et al. Refining the diagnosis and prognostic categorization of acute myeloid leukemia patients with an integrated use of cytogenetic and molecular studies. Acta Haematol. 2013;129(2):65–71.

Smith ML, Hills RK, Grimwade D. Independent prognostic variables in acute myeloid leukaemia. Blood Rev. 2011;25(1):39–51.

Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93(3):442–59.

Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet (London, England). 2010;376(9747):1164–74.

Rodríguez-Vicente AE, Díaz MG, Hernández-Rivas JM. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet. 2013;206(3):49–62.

Kawankar N, Jijina F, Ghosh K, Vundinti BR. Cytogenetic and comparative genomic hybridization study of Indian myelodysplastic syndromes. Cancer Epidemiol. 2011;35(4):e1-5.

Ademà V, Hernández JM, Abáigar M, Lumbreras E, Such E, Calull A, et al. Application of FISH 7q in MDS patients without monosomy 7 or 7q deletion by conventional G-banding cytogenetics: does -7/7q- detection by FISH have prognostic value? Leuk Res. 2013;37(4):416–21.

Voso MT, Fenu S, Latagliata R, Buccisano F, Piciocchi A, Aloe-Spiriti MA, et al. Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO Prognostic Scoring System: validation by the Gruppo Romano Mielodisplasie Italian Regional. J Clin Oncol. 2013;31(21):2671–7.

Basso K, Dalla-Favera R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev. 2012;247(1):172–83.

Jacobson JO, Wilkes BM, Kwaiatkowski DJ, Medeiros LJ, Aisenberg AC, Harris NL. bcl-2 rearrangements in de novo diffuse large cell lymphoma. Association with distinctive clinical features. Cancer. 1993;72(1):231–6.

Zhou K, Xu D, Cao Y, Wang J, Yang Y, Huang M. C-MYC aberrations as prognostic factors in diffuse large B-cell lymphoma: a meta-analysis of epidemiological studies. PLoS One. 2014;9(4):e95020.

Klapper W, Stoecklein H, Zeynalova S, Ott G, Kosari F, Rosenwald A, et al. Structural aberrations affecting the MYC locus indicate a poor prognosis independent of clinical risk factors in diffuse large B-cell lymphomas treated within randomized trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Leukemia. 2008;22(12):2226–9.

Ott G, Rosenwald A, Campo E. Understanding MYCdriven aggressive B-cell lymphomas: pathogenesis and classification. Hematol Am Soc Hematol Educ Progr. 2013;2013:575–83.

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

Huang W, Medeiros LJ, Lin P, Wang W, Tang G, Khoury J,et al. MYC/BCL2/BCL6 triple hit lymphoma: a study of 40 patients with a comparison to MYC/BCL2 and MYC/BCL6 double hit lymphomas. Mod Pathol. 2018;31(9):1470-8.

Wang W, Hu S, Lu X, Young KH, Medeiros LJ. Triple-hit B-cell Lymphoma With MYC, BCL2, and BCL6 Translocations/Rearrangements: Clinicopathologic Features of 11 Cases. Am J Surg Pathol. 2015;39(8):1132–9.

Sesques P, Johnson NA. Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood. 2017;129(3):280–8.

Wolff AC, Hammond MEH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.

Muller KE, Marotti JD, Memoli VA, Wells WA, Tafe LJ. Impact of the 2013 ASCO/CAP HER2 Guideline Updates at an Academic Medical Center That Performs Primary HER2 FISH Testing: Increase in Equivocal Results and Utility of Reflex Immunohistochemistry. Am J Clin Pathol. 2015;144(2):247–52.

Guiu S, Michiels S, André F, Cortes J, Denkert C, Di Leo A, et al. Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol. 2012;23(12):2997–3006.

Zardavas D, Fouad TM, Piccart M. Optimal adjuvant treatment for patients with HER2-positive breast cancer in 2015. Breast. 2015;24 Suppl 2:S143-8.

Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014;15(6):640–7.

Hameed M. Molecular diagnosis of soft tissue neoplasia: clinical applications and recent advances. Expert Rev Mol Diagn. 2014;14(8):961–77.

Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, et al. The Ewing family of tumors--a subgroup of smallround- cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331(5):294–9.

Toquica A, Rueda X, Cervera S, Reina A, Pozzobon C, Morales SD, et al. Ewing’s sarcoma metastatic to skin: a case report and review of the literature. Int J Dermatol. 2018;57(11):1365-8.

Riely GJ, Chaft JE, Ladanyi M, Kris MG. Incorporation of crizotinib into the NCCN guidelines. J Natl Compr Canc Netw. 2011;9(12):1328–30.

Conde E, Angulo B, Izquierdo E, Muñoz L, Suárez-Gauthier A, Plaza C, et al. The ALK translocation in advanced non-smallcell lung carcinomas: preapproval testing experience at a single cancer centre. Histopathology. 2013;62(4):609–16.

Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L, Ilouze M, Dvir A, Boyle T, et al. Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist. 2015;20(3):316–22.

Cabillic F, Gros A, Dugay F, Begueret H, Mesturoux L, Chiforeanu DC, et al. Parallel FISH and immunohistochemical studies of ALK status in 3244 non-small-cell lung cancers reveal major discordances. J Thorac Oncol. 2014;9(3):295–306.

Cómo citar

[1]
Roncancio-Velandia, T. et al. 2019. Hibridación in situ fluorescente (FISH) en el Instituto Nacional de Cancerología (INC) de Colombia. Experiencia de 5 años. Revista Colombiana de Cancerología. 23, 1 (feb. 2019), 3–11. DOI:https://doi.org/10.35509/01239015.73.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

13-02-2019

Número

Sección

Artículos de investigación/originales
Crossref Cited-by logo