La proteína adaptadora Speckle-type POZ (SPOP) y su papel en cáncer

Autores/as

DOI:

https://doi.org/10.35509/01239015.717

Palabras clave:

SPOP, Ubiquitin ligase, Cancer, Biomarker, Oncogene, Tumor suppressor gene, proteasomal degradation

Resumen

La degradación proteosómica es un mecanismo de regulación esencial para el mantenimiento de la homeostasis celular. La proteína adaptadora Speckle type POZ (SPOP) hace parte del complejo ubiquitin ligasa E3 cullin-3 RING-box1, encargado de la ubiquitinación y degradación proteosomal de biomoléculas involucradas en el control del ciclo celular, proliferación, respuesta al daño de ADN, control epigenético, señalización hormonal, entre otros. Las alteraciones en SPOP han sido asociadas al desarrollo de diferentes tipos de cáncer, ya que puede actuar como supresor tumoral principalmente en cáncer de próstata, mama, colorrectal y pulmón, debido a mutaciones puntuales y/o expresión reducida o como oncogen en cáncer endometrial en donde se ha encontrado ganancia de función o en cáncer de riñón por sobreexpresión de la proteína. SPOP es considerado como un potencial biomarcador pronóstico y un objetivo terapéutico prometedor.

Referencias bibliográficas

Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev. 2017;36(4):717–36.

Errington WJ, Khan MQ, Bueler SA, Rubinstein JL, Chakrabartty A, Privé GG. Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure. 2012;20(7):1141–53.

Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, Gao D, et al. SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell [Internet]. 2017;31(3):436–51. Available from: http://dx.doi.org/10.1016/j.ccell.2017.02.004

Chuandong, Rajapakshe, Shrijal S. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer. 2015;74(19):5631–43.

Zhang P, Gao K, Jin X, Ma J, Peng J, Wumaier R, et al. Endometrial cancer-associated mutants of SPOP are defective in regulating estrogen receptor-α protein turnover. Cell Death Dis. 2015;6:e1687.

Petrovics G, Price DK, Lou H, Chen Y, Garland L, Bass S, et al. Increased frequency of germline BRCA2 mutations associates with prostate cancer metastasis in a racially diverse patient population. Prostate Cancer Prostatic Dis [Internet]. 2018; Available from: http://dx.doi.org/10.1038/s41391-018-0114-1

Janouskova H, El Tekle G, Bellini E, Udeshi ND, Rinaldi A, Ulbricht A, et al. Opposing effects of cancer-Type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nat Med [Internet]. 2017;23(9):1046–54. Available from: http://dx.doi.org/10.1038/nm.4372

Dai X, Gan W, Li X, Wang S, Zhang W, Huang L, et al. Prostate cancer – associated SPOP mutations confer resistance to BET inhibitors through stabilization of. Nat Publ Gr. 2017;(August).

Wu F, Dai X, Gan W, Wan L, Li M, Mitsiades N, et al. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. 2018;207–14.

Papers JBC, Doi M, Kwon JE, La M, Oh KH, Oh YM, et al. BTB Domain-containing Speckle-type POZ Protein ( SPOP ) Serves as an Adaptor of Daxx for Ubiquitination by Cul3-based Ubiquitin Ligase. 2006;281(18):12664–72.

Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res. 2019;47(15):7734–52.

Luo J, Chen B, Gao CX, Xie HK, Han CN, Zhou CC. SPOP promotes FADD degradation and inhibits NF-κB activity in non-small cell lung cancer. Biochem Biophys Res Commun [Internet]. 2018;504(1):289–94. Available from: https://doi.org/10.1016/j.bbrc.2018.08.176

Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77.

Bouchard JJ, Otero JH, Scott DC, Salvatella X, Schulman BA, Mittag T, et al. Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active , Phase-Separated Article Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active , Phase-Separated Compartments. Mol Cell [Internet]. 2018;72(1):19-36.e8. Available from: https://doi.org/10.1016/j.molcel.2018.08.027

Cheng F, Zeng C, Zeng L, Wu C, Chen Y. The association of speckle-type POZ protein with lymph node metastasis and prognosis in cancer patients: A meta-analysis. Med (United States). 2019;98(40).

Hernández-Llodrà S, Segalés L, Safont A, Juanpere N, Lorenzo M, Fumadó L, et al. SPOP and FOXA1 mutations are associated with PSA recurrence in ERG wt tumors, and SPOP downregulation with ERG-rearranged prostate cancer. Prostate. 2019;79(10):1156–65.

Zhang D, Wang H, Sun M, Yang J, Zhang W, Han S, et al. Speckle-type POZ protein, SPOP, is involved in the DNA damage response. Carcinogenesis. 2014;35(8):1691–7.

Zhu H, Ren S, Bitler BG, Aird KM, Tu Z, Skordalakes E, et al. SPOP E3 Ubiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase. Cell Rep. 2015;13(6):1183–93.

Nagai Y, Kojima T, Muro Y, Hachiya T, Nishizawa Y, Wakabayashi T, et al. Identification of a novel nuclear speckle-type protein, SPOP. FEBS Lett [Internet]. 1997;418(1–2):23–6. Available from: http://dx.doi.org/10.1016/S0014-5793(97)01340-9

NCBI. SPOP speckle type BTB/POZ protein [ Homo sapiens (human) ]. 2019.

Hu Y, Yang L, Zhang M, Huang Z, Lin J, Zhang N. Expression and clinical relevance of SPOPL in medulloblastoma. Oncol Lett. 2017;14(3):3051–6.

Zhuang M, Calabrese MF, Liu J, Waddell MB, Hammel M, Miller DJ, et al. Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Mol Cell. 2010;36(1):39–50.

Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, et al. Intrinsic BET inhibitor resistance in SPOP -mutated prostate cancer is mediated by BET protein stabilization and AKT – mTORC1 activation. 2017;(August).

Nicole Jung-Eun Kim, Victoria Breckwich Vásquezc, Elizabeth Torrese, R. M., Bud Nicola and CK. Multiple weak linear motifs enhance recruitment and processivity in SPOP-mediated substrate ubiquitination. Physiol Behav. 2017;176(3):139–48.

Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, et al. Higher‐order oligomerization promotes localization of SPOP to liquid nuclear speckles . EMBO J. 2016;35(12):1254–75.

Cuneo MJ, Mittag T. The ubiquitin ligase adaptor SPOP in cancer. FEBS J. 2019;286(20):3946–58.

Bulatov E, Ciulli A. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J [Internet]. 2015;467(3):365–86. Available from: http://biochemj.org/lookup/doi/10.1042/BJ20141450

Ma J, Chang K, Peng J, Shi Q, Gan H, Gao K, et al. SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. J Exp Clin Cancer Res. 2018;37(1):1–13.

Geng C, Kaochar S, Li M, Rajapakshe K, Dong J, Foley C, et al. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of cMYC oncoprotein. 2018;36(33):4767–77.

Theurillat JP, Udeshi ND, Errington WJ, Baca SC, Pop M, Wild PJ, et al. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. 2014;346(6205):85–9.

Kim B, Jin H, Eun K, Jung M, Soo I, Kim D, et al. Breast cancer metastasis suppressor 1 ( BRMS1 ) is destabilized by the Cul3 – SPOP E3 ubiquitin ligase complex. Biochem Biophys Res Commun [Internet]. 2011;415(4):720–6. Available from: http://dx.doi.org/10.1016/j.bbrc.2011.10.154

Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10(11).

Jeffrey R. Wozniak, Ph.D., Edward P. Riley, Ph.D., Michael E. Charness MD. SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Physiol Behav. 2019;176(1):139–48.

Wang X, Jin J, Wan F, Zhao L, Chu H, Chen C, et al. AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Dev Cell [Internet]. 2019;48(3):345-360.e7. Available from: https://doi.org/10.1016/j.devcel.2018.11.033

Zeng C, Wang Y, Lu Q, Chen J, Zhang J, Liu T, et al. SPOP suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2014;33(1):1–12.

Christopher E, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat J, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. 2014;44(6):685–9.

Gao K, Jin X, Tang Y, Ma J, Peng J, Yu L, et al. Tumor suppressor SPOP mediates the proteasomal degradation of progesterone receptors (PRs) in breast cancer cells. Am J Cancer Res. 2015;5(10):3210–20.

Fong K wing, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun [Internet]. 2018;9(1). Available from: http://dx.doi.org/10.1038/s41467-018-07475-5

Groner AC, Cato L, Tribolet-hardy J De, Bernasocchi T, Melchers D, Houtman R, et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. 2017;29(6):846–58.

An J, Ren S, Murphy SJ, Dalangood S, Chang C, Pang X, et al. Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation. Mol Cell [Internet]. 2015;59(6):904–16. Available from: http://dx.doi.org/10.1016/j.molcel.2015.07.025

Gan W, Dai X, Lunardi A, Li Z, Inuzuka H, Liu P, et al. SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Mol Cell [Internet]. 2015;59(6):917–30. Available from: http://dx.doi.org/10.1016/j.molcel.2015.07.026

Coquenlorge S, Yin WC, Yung T, Pan J, Zhang X, Mo R, et al. GLI2 Modulated by SUFU and SPOP Induces Intestinal Stem Cell Niche Signals in Development and Tumorigenesis. Cell Rep [Internet]. 2019;27(10):3006-3018.e4. Available from: https://doi.org/10.1016/j.celrep.2019.05.016

Jin X, Wang J, Li Q, Zhuang H, Yang J, Lin Z, et al. SPOP targets oncogenic protein ZBTB3 for destruction to suppress endometrial cancer. 2019;9(12):2797–812.

Yuan LJ, Long ZQ, Xiang XL, Tang LS, Yin L, Xiao Y, et al. SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability. Cell Death Differ [Internet]. 2019;1156–68. Available from: http://dx.doi.org/10.1038/s41418-018-0198-0

Shi Q, Zhu Y, Ma J, Chang K, Ding D, Bai Y, et al. Prostate Cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Mol Cancer. 2019;18(1):1–14.

Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta - Mol Cell Res [Internet]. 2016 Jun 1 [cited 2018 Mar 1];1863(6):1238–60. Available from: https://www.sciencedirect.com/science/article/pii/S0167488916300416

Lund AH, Stoop P Van Der, Boutsma E, Muijrers I. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3 ͞ SPOP ubiquitin E3 ligase. 2005;102(21):7635–40.

Zhu K, Lei PJ, Ju LG, Wang X, Huang K, Yang B, et al. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Res. 2017;45(1):92–105.

Luo J, Bao Y chen, Ji X xiu, Chen B, Deng Q fang, Zhou S wen. SPOP promotes SIRT2 degradation and suppresses non-small cell lung cancer cell growth. Biochem Biophys Res Commun [Internet]. 2017;483(2):880–4. Available from: http://dx.doi.org/10.1016/j.bbrc.2017.01.027

Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Vol. 553, Nature. 2018. 91–95 p.

Ji P, Liang S, Li P, Xie C, Li J, Zhang K, et al. Speckle-type POZ protein suppresses hepatocellular carcinoma cell migration and invasion via ubiquitin-dependent proteolysis of SUMO1/sentrin specific peptidase 7. Biochem Biophys Res Commun [Internet]. 2018;502(1):30–42. Available from: https://doi.org/10.1016/j.bbrc.2018.05.115

Ostertag MS, Messias AC, Sattler M. The Structure of the SPOP-Pdx1 Interface Reveals Insights into the Phosphorylation-Dependent Binding Regulation. Struct Des [Internet]. 2019;27(2):327-334.e3. Available from: https://doi.org/10.1016/j.str.2018.10.005

Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA. Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice. 2010;120(10):3713–21.

Li Q, Wang F, Wang Q, Zhang N, Zheng J, Zheng M, et al. SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response. PLOS Pathog [Internet]. 2020;16(5):e1008188. Available from: http://dx.doi.org/10.1371/journal.ppat.1008188

Hu YH, Wang Y, Wang F, Dong YM, Jiang WL, Wang YP, et al. SPOP negatively regulates Toll-like receptor-induced inflammation by disrupting MyD88 self-association. Cell Mol Immunol [Internet]. 2020;(March). Available from: http://dx.doi.org/10.1038/s41423-020-0411-1

Wang L, Lin M, Chu M, Liu Y, Ma J, He Y, et al. SPOP Promotes Ubiquitination and Degradation of LATS1 to Enhance Kidney Cancer Progression. EBioMedicine [Internet]. 2020;56:102795. Available from: https://doi.org/10.1016/j.ebiom.2020.102795

Guillamot M, Ouazia D, Dolgalev I, Yeung ST, Kourtis N, Dai Y, et al. The E3 ubiquitin ligase SPOP controls resolution of systemic inflammation by triggering MYD88 degradation. Nat Immunol [Internet]. 2019;20(9):1196–207. Available from: http://dx.doi.org/10.1038/s41590-019-0454-6

Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, et al. SPOP mutation leads to genomic instability in prostate cancer. Elife. 2015;4(September):1–4.

Dong Y, Zhang D, Cai M, Luo Z, Zhu Y, Gong L, et al. SPOP regulates the DNA damage response and lung adenocarcinoma cell response to radiation. Am J Cancer Res [Internet]. 2019;9(7):1469–83. Available from: www.ajcr.us/

Hjorth-Jensen K, Maya-Mendoza A, Dalgaard N, Sigurðsson JO, Bartek J, Iglesias-Gato D, et al. SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res. 2018;46(18):9484–95.

Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, et al. A SPOPL/cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. Elife. 2016;5(MARCH2016):1–26.

Lan X, Khandros E, Huang P, Peslak SA, Bhardwaj SK, Grevet JD, et al. The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells. Blood Adv. 2019;3(10):1586–97.

Nabais Sá MJ, El Tekle G, de Brouwer APM, Sawyer SL, del Gaudio D, Parker MJ, et al. De Novo Variants in SPOP Cause Two Clinically Distinct Neurodevelopmental Disorders. Am J Hum Genet. 2020;106(3):405–11.

Gallo M Le, Hara AJO, Rudd ML, Urick ME, Nancy F, Neil NJO, et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. 2013;44(12):1310–5.

Shoag J, Liu D, Ma X, Oromendia C, Christos P, Ballman K, et al. Prognostic value of the SPOP mutant genomic subclass in prostate cancer. Urol Oncol Semin Orig Investig [Internet]. 2020;000:1–5. Available from: https://doi.org/10.1016/j.urolonc.2020.02.011

Liu D, Takhar M, Alshalalfa M, Erho N, Shoag J, Jenkins RB, et al. Impact of the SPOP Mutant Subtype on the Interpretation of Clinical Parameters in Prostate Cancer. JCO Precis Oncol. 2018;(2):1–13.

Blattner M, Lee DJ, Reilly CO, Park K, Macdonald TY, Khani F, et al. SPOP Mutations in Prostate Cancer across Demographically Diverse Patient Cohorts. 2014;16(1):14–20.

Memorial Sloan Kettering Cancer Center (MSK), Princess Margaret Cancer Centre in Toronto, Children’s Hospital of Philadelphia TH in the N and BU in A. cBioPortal for Cancer Genomics [Internet]. 2020. Available from: https://www.cbioportal.org/

Catalogue of Somatic Mutation in Cancer COSMIC. SPOP Gene [Internet]. 2020 [cited 2018 Mar 10]. Available from: http://cancer.sanger.ac.uk/cosmic/gene/analysis?coords=bp%3AAA&wgs=off&id=6661&ln=SPOP&start=1&end=375

Lythgoe C, Dynda D, Alanee S. Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer. Prostate Cancer Sci Clin Pract Second Ed. 2016;74(9):141–7.

Adam Abeshouse, Jaeil Ahn, Rehan Akbani AA. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163:1011–25.

Yuan J, Kensler KH, Hu Z, Zhang Y, Zhang T, Jiang J, et al. Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet [Internet]. 2020;16(2):1–26. Available from: http://dx.doi.org/10.1371/journal.pgen.1008641

Khani F, Mosquera JM, Park K, Blattner M, Reilly O, Macdonald TY, et al. Evidence for Molecular Differences in Prostate Cancer between African American and Caucasian Men. Clin Cancer Res. 2015;20(March 2012):4925–34.

Riisnaes R, Crespo M, Zafeiriou Z, Sumanasuriya S, Bianchini D, Hunt J, et al. SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity. Clin Cancer Res. 2019;24(22):5585–93.

Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E, et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci U S A. 2013;110(8):2916–21.

Le Gallo M, Bell DW. The emerging genomic landscape of endometrial cancer. Clin Chem. 2014;60(1):98–110.

Torres-Arzayus MI, De Mora JF, Yuan J, Vazquez F, Bronson R, Rue M, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell. 2004;6(3):263–74.

Ostertag MS, Hutwelker W, Plettenburg O, Sattler M, Popowicz GM. Structural Insights into BET Client Recognition of Endometrial and Prostate Cancer-Associated SPOP Mutants. J Mol Biol [Internet]. 2019;431(11):2213–21. Available from: https://doi.org/10.1016/j.jmb.2019.04.017

Cramer LR y S. SPOP the mutation. Elife. 2015;4:e11760:1–4.

Shenoy TR, Boysen G, Wang MY, Xu QZ, Guo W, Koh FM, et al. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol Off J Eur Soc Med Oncol. 2017;28(7):1495–507.

Bezawy R El, Tripari M, Percio S, Cicchetti A, Tortoreto M, Stucchi C, et al. SPOP deregulation improves the radiation response of prostate cancer models by impairing DNA damage repair. Cancers (Basel). 2020;12(6):1–15.

Watanabe R, Maekawa M, Hieda M, Taguchi T, Miura N, Kikugawa T, et al. SPOP is essential for DNA-protein cross-link repair in prostate cancer cells: SPOP-dependent removal of topoisomerase 2A from the topoisomerase 2A-DNA cleavage complex. Mol Biol Cell. 2020;31(6):478–90.

Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer [Internet]. 2017;17(6):337–51. Available from: http://dx.doi.org/10.1038/nrc.2017.20

Xu J, Wang F, Jiang H, Jiang Y, Chen J, Qin J. Properties and Clinical Relevance of Speckle-Type POZ Protein in Human Colorectal Cancer. J Gastrointest Surg. 2015;19(8):1484–96.

Zhang S, Xiao J, Chai Y, Hong Z, Liu Z, Yuan R, et al. Speckle ‑ Type POZ Protein Down ‑ Regulates Matrix Metalloproteinase 2 Expression via Sp1 / PI3K / Akt Signaling Pathway in Colorectal Cancer. Dig Dis Sci [Internet]. 2017;(0123456789). Available from: https://doi.org/10.1007/s10620-017-4884-4

Zhi X, Tao J, Zhang L, Tao R, Ma L, Qin J. Silencing speckle-type POZ protein by promoter hypermethylation decreases cell apoptosis through upregulating hedgehog signaling pathway in colorectal cancer. Cell Death Dis [Internet]. 2016;7(12):1–11. Available from: http://dx.doi.org/10.1038/cddis.2016.435

Bawa-Khalfe T, Lu LS, Zuo Y, Huang C, Dere R, Lin FM, et al. Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci U S A. 2012;109(43):17466–71.

Wang F, Tang C, Xu D, Tang Y, Jiang Y, Gao X, et al. LncRNA ADAMTS9-AS2 suppresses the proliferation of gastric cancer cells and the tumorigenicity of cancer stem cells through regulating SPOP. J Cell Mol Med. 2020;(August 2019):1–9.

Li G, Ci W, Karmakar S, Chen K, Dhar R, Fan Z, et al. SPOP Promotes Tumorigenesis by Acting as a Key Regulatory Hub in Kidney Cancer. Cancer Cell [Internet]. 2014;25(4):455–68. Available from: http://dx.doi.org/10.1016/j.ccr.2014.02.007

Zhao W, Zhou J, Deng Z, Gao Y, Cheng Y. SPOP promotes tumor progression via activation of catenin/ TCF4 complex in clear cell renal cell carcinoma. Int J Oncol. 2016;49(3):1001–8.

Yao S, Chen X, Chan J, Guan Y, Liu Y, Chen J, et al. Speckle-type POZ protein functions as a tumor suppressor in non-small cell lung cancer due to DNA methylation. Cancer Cell Int [Internet]. 2018;18(1):1–14. Available from: https://doi.org/10.1186/s12935-018-0711-z

Jiao C, Meng T, Zhou C, Wang X, Wang P, Lu M, et al. TGF- β s ignaling regulates SPOP expression and promotes prostate cancer cell stemness. 2020;12:1–14.

Ding M, Lu X, Wang C, Zhao Q, Ge J, Xia Q, et al. The E2F1–miR-520/372/373–SPOP axis modulates progression of renal carcinoma. Cancer Res. 2018;78(24):6771–84.

García-Flores M, Casanova-Salas I, Rubio-Briones J, Calatrava A, Domínguez-Escrig J, Rubio L, et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur J Cancer. 2014;50(17):2994–3002.

Acosta N, Varela R, Mesa JA, Serrano López ML, Cómbita AL, Sanabria-Salas MC. Biomarcadores de pronóstico en pacientes con cáncer de próstata localizado. Rev Colomb Cancerol. 2017;21(2):113–25.

Li JJ, Zhang JF, Yao SM, Huang H, Zhang S, Zhao M, et al. Decreased expression of speckle-type POZ protein for the prediction of poor prognosis in patients with non-small cell lung cancer. Oncol Lett. 2017;14(3):2743–8.

Xu J, Wang F, Wang X, He Z, Zhu X. MiRNA-543 promotes cell migration and invasion by targeting SPOP in gastric cancer. Onco Targets Ther. 2018;11:5075–82.

Harb OA, Elfeky MA, El Shafaay BS, Taha HF, Osman G, Harera IS, et al. SPOP, ZEB-1 and E-cadherin expression in clear cell renal cell carcinoma (cc-RCC): Clinicopathological and prognostic significance. Pathophysiology [Internet]. 2018;25(4):335–45. Available from: https://doi.org/10.1016/j.pathophys.2018.05.004

Ojha R, Mandal AK. Speckle ‑ type POZ protein as a diagnostic biomarker in renal cell carcinoma. 2018;977–82.

Zheng T, Yang CG. Targeting SPOP with small molecules provides a novel strategy for kidney cancer therapy. Sci China Life Sci. 2017;60(1):91–3.

Guo ZQ, Zheng T, Chen B, Luo C, Ouyang S, Gong S, et al. Small-Molecule Targeting of E3 Ligase Adaptor SPOP in Kidney Cancer. Cancer Cell. 2016;30(3):474–84.

Dong Z, Wang Z, Guo Z-Q, Gong S, Zhang T, Liu J, et al. Structure-activity Relationship of SPOP Inhibitors Against Kidney Cancer. J Med Chem. 2020;

Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016;113(26):7124–9.

Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol [Internet]. 2018;1(1):1–9. Available from: http://dx.doi.org/10.1038/s42003-018-0105-8

Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, et al. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. J Med Chem. 2019;62(2):941–64.

Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Ther [Internet]. 2017;174:138–44. Available from: http://dx.doi.org/10.1016/j.pharmthera.2017.02.027

Yan Y, Ma J, Wang D, Lin D, Pang X, Wang S, et al. The novel BET‐CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild‐type prostate cancer. EMBO Mol Med. 2019;11(11):1–19.

Yan Y, An J, Yang Y, Wu D, Bai Y, Cao W, et al. Dual inhibition of AKT ‐m TOR and AR signaling by targeting HDAC 3 in PTEN ‐ or SPOP ‐mutated prostate cancer . EMBO Mol Med. 2018;10(4):1–20.

Jin X, Wang J, Gao K, Zhang P, Yao L, Tang Y, et al. Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genet. 2017;13(4):1–24.

Li K, Wu J lin, Qin B, Fan Z, Tang Q, Lu W, et al. ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer. Cell Res [Internet]. 2019;(June).

Cómo citar

[1]
Montero Ovalle, W.J. et al. 2021. La proteína adaptadora Speckle-type POZ (SPOP) y su papel en cáncer. Revista Colombiana de Cancerología. 25, 3 (sep. 2021), 125–39. DOI:https://doi.org/10.35509/01239015.717.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

06-09-2021

Número

Sección

Artículos de revisión