Frecuencias de las pérdidas de heterocigocidad en la región que codifica para HLA en biopsias de pacientes con cáncer de cuello uterino

Autores/as

  • Josefa Antonia Rodríguez Instituto Nacional de Cancerología
  • Liliana Galeano Instituto Nacional de Cancerología
  • Diana María Palacios Universidad Nacional de Colombia
  • Martha Lucía Serrano Instituto Nacional de Cancerología
  • María Mercedes Bravo Instituto Nacional de Cancerología
  • Alba Lucía Cómbita Instituto Nacional de Cancerología

Palabras clave:

neoplasias de cuello uterino, pérdida de heterocigocidad, antígenos HLA, escape del tumor

Resumen

Objetivo: Determinar las frecuencias de pérdidas de heterocigocidad de LOH en las regiones 6p21.3 y 15q21 que codifican para HLA y β2microglobulina, para establecer su correlación con el estadio tumoral, teniendo en cuenta que las LOH en HLA I ocurren como un evento genético temprano del cáncer y pueden contribuir a su desarrollo.
Métodos: Se tomaron muestras de sangre periférica (SP) y biopsias de cuello uterino de pacientes con NICIII y CCU. Se amplificaron 11 microsatélites relacionados con el sistema HLA en pares normal-tumor a partir de ADN purificado de células de SP y células tumorales microdisectadas. Las LOH fueron determinadas por electroforesis capilar y analizadas mediante los programas GeneScan y Genotyper.
Resultado: Todas las muestras amplificaron más de 7 microsatélites (promedio 9,5). El porcentaje de heterocigocidad para los marcadores de microsatélites utilizados en las muestras de cuello uterino varió entre 51,8% y 95%, y la LOH, entre 17,4% y 50,0%. Las frecuencias observadas para LOH en los diferentes estadios tumorales fueron: 42,9% en el grupo de NIC-III; 57% en CCU en estadio I; 63,6% en CCU en estadio II y 92,85% en pacientes con estadios más avanzados (III-IV).
Conclusión: Se observó una mayor frecuencia de LOH en los grupos de pacientes con estadios avanzados de CCU, al comparar con pacientes con NIC-III.

Biografía del autor/a

Josefa Antonia Rodríguez, Instituto Nacional de Cancerología

Instituto Nacional de Cancerología, Bogotá, Colombia.

Liliana Galeano, Instituto Nacional de Cancerología

Instituto Nacional de Cancerología, Bogotá, Colombia.

Diana María Palacios, Universidad Nacional de Colombia

Universidad Nacional de Colombia, Bogotá, Colombia.
Fundación Santa Fe de Bogotá, Bogotá, Colombia.

Martha Lucía Serrano, Instituto Nacional de Cancerología

Instituto Nacional de Cancerología, Bogotá, Colombia.

María Mercedes Bravo, Instituto Nacional de Cancerología

Instituto Nacional de Cancerología, Bogotá, Colombia.

Alba Lucía Cómbita, Instituto Nacional de Cancerología

Instituto Nacional de Cancerología, Bogotá, Colombia.
Universidad Nacional de Colombia, Bogotá, Colombia.

Referencias bibliográficas

Dutrillaux B. Pathways of chromosome alteration in human epithelial cancers. Adv Cancer Res 1995;67:59-82.

https://doi.org/10.1016/S0065-230X(08)60710-1

Pathak S, Multani AS. Aneuploidy, stem cells and cancer. EXS 2006;(96):49-64.

https://doi.org/10.1007/3-7643-7378-4_3

Sugai T, Habano W, Jiao YF, Suzuki M, Takagane A, Nakamura S. Analysis of genetic alterations associated with DNA diploidy, aneuploidy and multiploidy in gastric cancers. Oncology 2005; 68(4-6):548-57.

https://doi.org/10.1159/000086999

Algarra I, Collado A, Garrido F. Altered MHC class I antigens in tumors. Int J Clin Lab Res 1997; 27(2):95-102.

https://doi.org/10.1007/BF02912442

Devilee P, Cleton-Jansen AM, Cornelisse CJ. Ever since Knudson. Trends Genet 2001;17(10):569-73.

https://doi.org/10.1016/S0168-9525(01)02416-7

Armitage P, Doll R. A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer 1957;11(2):161-9.

https://doi.org/10.1038/bjc.1957.22

Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971; 68(4):820-3.

https://doi.org/10.1073/pnas.68.4.820

Knudson AG, Jr., Hethcote HW, Brown BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci U S A 1975; 72(12):5116-20.

https://doi.org/10.1073/pnas.72.12.5116

Jackson CE, Block MA, Greenawald KA, Tashjian AH, Jr. The two-mutational-event theory in medullary thyroid cancer. Am J Hum Genet 1979; 31(6):704-10.

Hethcote HW, Knudson AG, Jr. Model for the incidence of embryonal cancers: application to retinoblastoma. Proc Natl Acad Sci U S A 1978; 75(5):2453-7.

https://doi.org/10.1073/pnas.75.5.2453

Maleno I, López-Nevot MA, Cabrera T, Salinero J, Garrido F. Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Cancer Immunol Immunother 2002; 51(7):389-96.

https://doi.org/10.1007/s00262-002-0296-0

Maleno I, Cabrera CM, Cabrera T, Paco L, López-Nevot MA, Collado A, et al. Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics 2004; 56(4):244-53.

https://doi.org/10.1007/s00251-004-0692-z

Jiménez P, Canton J, Collado A, Cabrera T, Serrano A, Real LM, et al. Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors. Int J Cancer 1999; 83(1):91-7.

https://doi.org/10.1002/(SICI)1097-0215(19990924)83:1<91::AID-IJC17>3.0.CO;2-4

Bjorkman PJ, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990; 59:253-88.

https://doi.org/10.1146/annurev.bi.59.070190.001345

Palmisano GL, Pistillo MP, Capanni P, Pera C, Nicolo G, Salvi S, et al. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62(2):133-9.

https://doi.org/10.1016/S0198-8859(00)00241-X

Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 1996; 98(7):1633-41.

https://doi.org/10.1172/JCI118958

Garrido F, Ruiz-Cabello F, Cabrera T, Pérez-Villar JJ, López-Botet M, Duggan-Keen M, et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997; 18(2):89-95.

https://doi.org/10.1016/S0167-5699(96)10075-X

Kersemaekers AM, Kenter GG, Hermans J, Fleuren GJ, van de Vijver MJ. Allelic loss and prognosis in carcinoma of the uterine cervix. Int J Cancer 1998; 79(4):411-7.

https://doi.org/10.1002/(SICI)1097-0215(19980821)79:4<411::AID-IJC17>3.0.CO;2-7

Mitra AB, Murty VV, Li RG, Pratap M, Luthra UK, Chaganti RS. Allelotype analysis of cervical carcinoma. Cancer Res 1994; 54(16):4481-7.

Mitra AB, Murty VV, Singh V, Li RG, Pratap M, Sodhani P, et al. Genetic alterations at 5p15: a potential marker for progression of precancerous lesions of the uterine cervix. J Natl Cancer Inst 1995; 87(10):742-5.

https://doi.org/10.1093/jnci/87.10.742

Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004; 5(6):435-45.

https://doi.org/10.1038/nrg1348

Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 1996; 380(6570):152-4.

https://doi.org/10.1038/380152a0

Ramal LM, Maleno I, Cabrera T, Collado A, Ferron A, López-Nevot MA, et al. Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Hum Immunol 2000; 61(10):1001-12.

https://doi.org/10.1016/S0198-8859(00)00171-3

Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230(4732):1350-4.

https://doi.org/10.1126/science.2999980

Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodríguez F, Camacho FM, et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 2008; 60(8):439-47.

https://doi.org/10.1007/s00251-008-0303-5

Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection. Vaccine 2002 Dec 19;20 Suppl 4:A40-A45.

https://doi.org/10.1016/S0264-410X(02)00386-9

Campoli M, Chang CC, Oldford SA, Edgecombe AD, Drover S, Ferrone S. HLA antigen changes in malignant tumors of mammary epithelial origin: molecular mechanisms and clinical implications. Breast Dis 2004; 20:105-25.

https://doi.org/10.3233/BD-2004-20112

Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 2008; 27(45):5869-85.

https://doi.org/10.1038/onc.2008.273

Chang CC, Campoli M, Ferrone S. HLA class I defects in malignant lesions: what have we learned? Keio J Med 2003; 52(4):220-9.

https://doi.org/10.2302/kjm.52.220

Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother 2006 Jun 17.

https://doi.org/10.1007/s00262-006-0183-1

Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance. Adv Cancer Res 2001; 83:117-58.

https://doi.org/10.1016/S0065-230X(01)83005-0

Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74:181-273.

https://doi.org/10.1016/S0065-2776(08)60911-6

Seliger B, Cabrera T, Garrido F, Ferrone S. HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 2002; 12(1):3-13.

https://doi.org/10.1006/scbi.2001.0404

Aptsiauri N, Cabrera T, García-Lora A, López-Nevot MA, Ruiz-Cabello F, Garrido F. MHC class I antigens and immune surveillance in transformed cells. Int Rev Cytol 2007; 256:139-89.

https://doi.org/10.1016/S0074-7696(07)56005-5

Yang Y, Zhang J, Miao F, Wei J, Shen C, Shen Y, et al. Loss of heterozygosity at 6p21 underlying [corrected] HLA class I downregulation in Chinese primary esophageal squamous cell carcinomas. Tissue Antigens 2008; 72(2):105-14.

https://doi.org/10.1111/j.1399-0039.2008.01078.x

Harima Y, Harima K, Sawada S, Tanaka Y, Arita S, Ohnishi T. Loss of heterozygosity on chromosome 6p21.2 as a potential marker for recurrence after radiotherapy of human cervical cancer. Clin Cancer Res 2000; 6(3):1079-85.

Chatterjee A, Pulido HA, Koul S, Beleno N, Perilla A, Posso H, et al. Mapping the sites of putative tumor suppressor genes at 6p25 and 6p21.3 in cervical carcinoma: occurrence of allelic deletions in precancerous lesions. Cancer Res 2001; 61(5):2119-23.

Mazurenko NN, Bliev AI, Bidzhieva BA, Peskov DI, Snigur NV, Savinova EB, et al. [Loss of heterozygosity at chromosome 6 as a marker of early genetic alterations in cervical intraepithelial neoplasias and microinvasive carcinomas]. Mol Biol (Mosk) 2006; 40(3):436-47.

https://doi.org/10.1134/S0026893306030058

Vermeulen CF, Jordanova ES, Zomerdijk-Nooijen YA, ter Haar NT, Peters AA, Fleuren GJ. Frequent HLA class I loss is an early event in cervical carcinogenesis. Hum Immunol 2005; 66(11):1167-73.

https://doi.org/10.1016/j.humimm.2005.10.011

Bontkes HJ, Walboomers JM, Meijer CJ, Helmerhorst TJ, Stern PL. Specific HLA class I down-regulation is an early event in cervical dysplasia associated with clinical progression. Lancet 1998; 351(9097):187-8.

https://doi.org/10.1016/S0140-6736(05)78209-X

Aptsiauri N, Carretero R, García-Lora A, Real LM, Cabrera T, Garrido F. Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunol Immunother 2008; 57(11):1727-33.

https://doi.org/10.1007/s00262-008-0532-3

Cabrera T, Lara E, Romero JM, Maleno I, Real LM, Ruiz-Cabello F, et al. HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol Immunother 2007; 56(5):709-17.

https://doi.org/10.1007/s00262-006-0226-7

Algarra I, Garcia-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53(10):904-10.

https://doi.org/10.1007/s00262-004-0517-9

Benítez R, Godelaine D, López-Nevot MA, Brasseur F, Jiménez P, Marchand M, et al. Mutations of the beta2- microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides. Tissue Antigens 1998; 52(6):520-9.

https://doi.org/10.1111/j.1399-0039.1998.tb03082.x

Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 1998; 101(12):2720-9.

https://doi.org/10.1172/JCI498

Poetsch M, Kleist B. Loss of heterozygosity at 15q21.3 correlates with occurrence of metastases in head and neck cancer. Mod Pathol 2006; 19(11):1462-9.

https://doi.org/10.1038/modpathol.3800666

Cómo citar

[1]
Rodríguez, J.A. et al. 2009. Frecuencias de las pérdidas de heterocigocidad en la región que codifica para HLA en biopsias de pacientes con cáncer de cuello uterino. Revista Colombiana de Cancerología. 13, 4 (dic. 2009), 191–204.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Número

Sección

Artículos de investigación/originales