Detección y tipificación del virus del papiloma humano (VPH) en mujeres con cáncer de cuello uterino en Bogotá y Barranquilla. Procedimientos técnicos y de diagnóstico

Autores/as

  • Mónica Molano Instituto Nacional de Cancerología
  • Raúl Murillo Instituto Nacional de Cancerología
  • Arlenne Cano Instituto Nacional de Cancerología
  • Óscar Gamboa Instituto Nacional de Cancerología
  • Jaime Ardila Instituto Nacional de Cancerología
  • Juan Carlos Mejía Instituto Nacional de Cancerología
  • Gilberto Martínez Clínica del Country

Palabras clave:

VPH, tipificación del ADN, neoplasias del cuello uterino, técnicas moleculares diagnósticas, Colombia.

Resumen

Objetivo: Analizar los procedimientos técnicos y de diagnóstico en la detección de genotipos del virus del papiloma humano (VPH) en muestras con cáncer de cuello uterino.
Métodos: Se tomaron tejidos incluidos en parafina de 268 casos de cáncer de cuello uterino, procedentes de Barranquilla y Bogotá. Se verificó el diagnóstico histológico mediante nuevos cortes y se analizó la calidad de las muestras mediante amplificación del gen de B-globina. En muestras B-globina negativas se realizaron nuevos cortes y nueva amplificación. La detección de VPH se realizó mediante iniciadores GP5+/GP6+ biodirigidos hacia la región L1, y tipificación mediante EIA y RLB. En las muestras negativas para GP5+/GP6+ se desarrollaron PCR tipo específicas hacia la región E7 de 14 tipos de VPH de alto riesgo.
Resultados: De las 268 muestras iniciales, 20 (7,46%) tuvieron diagnóstico histológico inadecuado; 55/248 muestras fueron inicialmente B-globina negativas, pero 29 se recuperaron con una segunda PCR realizada, dejando 26 B-globina negativas (10,5%). Se detectó VPH en 210/222 muestras adecuadas mediante GP5+/GP6+ (94,6%), y en 7 muestras adicionales (3,15%), mediante iniciadores dirigidos hacia E7. No se detectó infección en 2,25% de los casos. Se encontraron 24 tipos de VPH; los más prevalentes fueron el VPH-16 (50,9%), VPH-18 (12,7%), VPH-45 (8,8%), VPH-31 (6,5%) y VPH-58 (6,0%). Hubo un 16,6% de infecciones múltiples.
Conclusión: El adecuado procesamiento y diagnóstico de las muestras y el uso de pruebas combinadas hacia las regiones L1 y E7 permiten una estimación óptima de la prevalencia de la infección en muestras incluidas en parafina.

Biografía del autor/a

Mónica Molano, Instituto Nacional de Cancerología

Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá. Colombia.

Raúl Murillo, Instituto Nacional de Cancerología

Subdirección de Investigaciones, Instituto Nacional de Cancerología, Bogotá. Colombia.

Arlenne Cano, Instituto Nacional de Cancerología

Subdirección de Investigaciones, Instituto Nacional de Cancerología, Bogotá. Colombia.

Óscar Gamboa, Instituto Nacional de Cancerología

Subdirección de Investigaciones, Instituto Nacional de Cancerología, Bogotá. Colombia.

Jaime Ardila, Instituto Nacional de Cancerología

Subdirección de Investigaciones, Instituto Nacional de Cancerología, Bogotá. Colombia.

Juan Carlos Mejía, Instituto Nacional de Cancerología

Grupo de Patología, Instituto Nacional de Cancerología, Bogotá. Colombia.

Gilberto Martínez, Clínica del Country

Grupo de Ginecología, Clínica del Country, Bogotá. Colombia.

Referencias bibliográficas

Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999;189(1):12-9.

https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F

Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55(4):244-65.

https://doi.org/10.1136/jcp.55.4.244

Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003; 348(6):518-27.

https://doi.org/10.1056/NEJMoa021641

Muñoz N, Bosch FX, Castellsagué X, Díaz M, de Sanjose S, Hammouda D, et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer. 2004;111(2):278-85.

https://doi.org/10.1002/ijc.20244

Wu EQ, Zhang GN, Yu XH, Ren Y, Fan Y, Wu YG, et al. Evaluation of high-risk human papillomaviruses type distribution in cervical cancer in Sichuan province of China. BMC Cancer. 2008;8:202.

https://doi.org/10.1186/1471-2407-8-202

Klug SJ, Molijn A, Schopp B, Holz B, Iftner A, Quint W, et al. Comparison of the performance of different HPV genotyping methods for detecting genital HPV types. J Med Virol. 2008;80(7):1264-74.

https://doi.org/10.1002/jmv.21191

Gheit T, Vaccarella S, Schmitt M, Pawlita M, Franceschi S, Sankaranarayanan R, et al. Prevalence of human papillomavirus types in cervical and oral cancers in central India. Vaccine. 2009;27(5):636-9.

https://doi.org/10.1016/j.vaccine.2008.11.041

Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlee F, Hildesheim A, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol. 2000;38(1):357-61.

Kleter B, van Doorn L-J, ter Schegget J, Schrauwen L, van Krimpen K, Burger M, et al. Novel short-fragment PCR assay for highly sensitive broad spectrum detection of anogenital human papillomaviruses. Am J Pathol. 1998;153(6):1731-9.

https://doi.org/10.1016/S0002-9440(10)65688-X

Kleter B, van Doorn LJ, Schrauwen L,Molijn A, Sastrowijoto S, ter Schegget J, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol. 1999;37(8):2508-17.

https://doi.org/10.1128/JCM.37.8.2508-2517.1999

Dabić MM, Hlupić L, Babić D, Jukić S, Seiwerth S. Comparison of polymerase chain reaction and catalyzed signal amplification in situ hybridization methods for human papillomavirus detection in paraffin-embedded cervical preneoplastic and neoplastic lesions. Arch Med Res. 2004;35(6):511-6.

https://doi.org/10.1016/j.arcmed.2004.07.004

Cheah PL, Looi LM. Detection of the human papillomavirus in cervical carcinoma: a comparison between non-isotopic in-situ hybridisation and polymerase chain reaction as methods for detection in formalin fixed, paraffin-embedded tissues. Malays J Pathol. 2008;30(1):37-42.

Dalstein V, Merlin S, Bali C, Saunier M, Dachez R, Ronsin C. Analytical evaluation of the PapilloCheck test, a new commercial DNA chip for detection and genotyping of human papillomavirus. J Virol Methods. 2009;156(1-2):77-83.

https://doi.org/10.1016/j.jviromet.2008.11.002

Hesselink AT, van Ham MA, Heideman DA, Groothuismink ZM, Rozendaal L, Berkhof J, et al. Comparison of GP5+/6+-PCR and SPF10-line blot assays for detection of high-risk human papillomavirus in samples from women with normal cytology results who develop grade 3 cervical intraepithelial neoplasia. J Clin Microbiol. 2008;46(10):3215-21.

https://doi.org/10.1128/JCM.00476-08

Castle PE, Porras C, Quint WG, Rodriguez AC, Schiffman M, Gravitt PE, et al. Comparison of two PCR-based human papillomavirus genotyping methods. J Clin Microbiol. 2008;46(10):3437-45.

https://doi.org/10.1128/JCM.00620-08

Qu W, Jiang G, Cruz Y, Chang CJ, Ho GY, Klein RS, Burk RD. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol. 1997;35(6):1304-10.

https://doi.org/10.1128/JCM.35.6.1304-1310.1997

van Doorn LJ, Quint W, Kleter B, Molijn A, Colau B, Martin MT, et al. Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF(10) line probe assay. J Clin Microbiol. 2002;40(3):979-83.

https://doi.org/10.1128/JCM.40.3.979-983.2002

Pagliusi SR Dillner J, Pawlita M, Quint WG, Wheeler CM, Ferguson M. International standad reagents for harmonization of HPV srology and DNA assays-an update. Vaccine. 2006;24 Suppl 3:S3/193-200.

https://doi.org/10.1016/j.vaccine.2006.06.016

Clifford G, Franceschi S, Diaz M, Muñoz N, Villa LL. HPV type distribution in women with and without cevical neoplastic diseases. Vaccine. 2006;24 Suppl 3:S3/26-34.

https://doi.org/10.1016/j.vaccine.2006.05.026

Piñeros M, Ferlay J, Murillo R. Cancer incidence estimates at the national and district levels in Colombia. Salud Pública Méx. 2006;48(6):455-65.

https://doi.org/10.1590/S0036-36342006000600003

De Roda Husman AM, Walboomers JM, van der Brule AJ, Meijer CJ, Snijders PJ. The use general primers GP5 and GP6 elongated at their 3' ends with adjacent highly conserved sequences improves human papilomavirus detection by PCR. J Gen Virol. 1995;76 (Pt 4):1057-62.

https://doi.org/10.1099/0022-1317-76-4-1057

Jacobs MV, Snijders PJ, van den Brule AJ, Helmerhorst TJ, Meijer CJ, Walboomers JM. A general primer GP5+/ GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol. 1997;35(3):791-5.

https://doi.org/10.1128/JCM.35.3.791-795.1997

van den Brule AJ, Pol R, Fransen-Daalmeijer N, Schouls LM, Meijer CJ, Snijders PJ. GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J Clin Microbiol. 2002;40(3):779-87.

https://doi.org/10.1128/JCM.40.3.779-787.2002

Sigurdsson K, Taddeo FJ, Benediktsdottir KR, Olafsdottir K, Sigvaldason H, Oddsson K, et al. HPV genotypes in CIN 2-3 lesions and cervical cancer: a population-based study. Int J Cancer. 2007;121(12):2682-7.

https://doi.org/10.1002/ijc.23034

Illades-Aguiar B, Cortés-Malagón EM, Antonio-Véjar V, Zamudio-López N, Alarcón-Romero LD, Fernández- Tilapa G, et al. Cervical carcinoma in Southern Mexico: Human papillomavirus and cofactors. Cancer Detect Prev. 2009;32(4):300-7.

https://doi.org/10.1016/j.cdp.2008.09.001

Chichareon S, Herrero R, Muñoz N, Bosch FX, Jacobs MV, Deacon J, et al. Risk factors for cervical cancer in Thailand: a case-control study. J Natl Cancer Inst. 1998;90(1):50-7.

https://doi.org/10.1093/jnci/90.1.50

Ngelangel C, Muñoz N, Bosch FX, Limson GM, Festin MR, Deacon J, et al. Causes of cervical cancer in the Philippines: a case-control study. J Natl Cancer Inst. 1998;90(1):43-9.

https://doi.org/10.1093/jnci/90.1.43

Stevens MP, Tabrizi SN, Quinn MA, Garland SM. Human papillomavirus genotype prevalence in cervical biopsies from women diagnosed with cervical intraepithelial neoplasia or cervical cancer in Melbourne, Australia. Int J Gynecol Cancer. 2006;16(3):1017-24.

https://doi.org/10.1136/ijgc-00009577-200605000-00011

Muñoz N, Bosch FX, de Sanjosé S, Tafur L, Izarzugaza I, Gili M, et al. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain. Int J Cancer. 1992;52(5):743-9.

https://doi.org/10.1002/ijc.2910520513

Cullen AP, Reid R, Campion M, Lörincz AT. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol 1991;65(2):606-12.

https://doi.org/10.1128/JVI.65.2.606-612.1991

Berumen J, Casas L, Segura E, Amezcua JL, Garcia-Carranca A. Genome amplification of human papillomavirus types 16 and 18 in cervical carcinomas is related to the retention of E1/E2 genes. Int J Cancer. 1994;56(5):640-5.

https://doi.org/10.1002/ijc.2910560506

Matsukura T, Koi S, Sugase M. Both episomal and integrated forms of human papillomavirus type 16 are involved in invasive cervical cancers. Virology. 1989;172(1):63-72.

https://doi.org/10.1016/0042-6822(89)90107-4

van Ham MA, Bakkers JM, Harbers GK, Quint WG, Massuger LF, Melchers WJ. Comparison of two commercial assays for detection of human papillomavirus (HPV) in cervical scrape specimens: validation of the Roche AMPLICOR HPV test as a means to screen for HPV genotypes associated with a higher risk of cervical disorders. J Clin Microbiol. 2005;43(6):2662-7.

https://doi.org/10.1128/JCM.43.6.2662-2667.2005

van Hamont D, van Ham MA, Bakkers JM, Massuger LF, Melchers WJ. Evaluation of the SPF10-INNO LiPA human papillomavirus (HPV) genotyping test and the roche linear array HPV genotyping test. J Clin Microbiol. 2006;44(9):3122-9.

https://doi.org/10.1128/JCM.00517-06

Meijer CJ, Berkhof J, Castle PE, Hesselink AT, Franco EL, Ronco G, et al. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer. 2009;124(3):516-20.

https://doi.org/10.1002/ijc.24010

Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta- analysis update. Int J Cancer. 2007;121(3):621-32.

https://doi.org/10.1002/ijc.22527

Clifford GM, Gallus S, Herrero R, Muñoz N, Snijders PJ, Vaccarella S, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;366(9490):991-8.

https://doi.org/10.1016/S0140-6736(05)67069-9

Clifford GM, Smith JS, Plummer M, Muñoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer. 2003;88(1):63-73.

https://doi.org/10.1038/sj.bjc.6600688

Parkin DM, Almonte M, Bruni L, Clifford G, Curado MP, Piñeros M. Burden and trends of type-specific human papillomavirus infections and related diseases in the latin america and Caribbean region. Vaccine. 2008;26 Suppl 11:L1-15.

https://doi.org/10.1016/j.vaccine.2008.05.043

Cómo citar

[1]
Molano, M. et al. 2010. Detección y tipificación del virus del papiloma humano (VPH) en mujeres con cáncer de cuello uterino en Bogotá y Barranquilla. Procedimientos técnicos y de diagnóstico. Revista Colombiana de Cancerología. 14, 2 (jun. 2010), 78–87.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

01-06-2010

Número

Sección

Artículos de investigación/originales