La biopsia líquida en el diagnóstico y monitoreo de pacientes oncológicos: oportunidades y retos en Latinoamérica

  • Sandra Perdomo Universidad El Bosque
  • Lorena Montealegre-Páez Universidad El Bosque
  • Rafael Pacheco-Orozco Universidad El Bosque
  • Héctor Martínez-Gregorio Laboratorio Nacional en Salud
  • Felipe Vaca-Paniagua Laboratorio Nacional en Salud
  • Javier Ardila Universidad Nacional de Colombia
  • Federico Cayol Hospital Italiano
  • Javier Oliver Hospitales Universitarios Regional y Virgen de la Victoria
  • Cecilia Frecha Consejo Superior de Investigaciones Cientificas y Técnicas
  • Javier López Clínica Colsanitas S.A
  • David Carreño Clínica Colsanitas S.A
Palabras clave: Biopsia Líquida, América Latina, Ácidos Nucleicos Libres de Células, Terapia Molecular Dirigida

Resumen

En los últimos años, el estudio de los ácidos nucleicos circulantes ha tenido grandes avances en el campo de la oncología, lo que ha permitido avanzar de forma importante en las aplicaciones clínicas de la biopsia liquida en diferentes aspectos como el pronóstico, la estadificación, la predicción de recurrencia, la selección y monitorización de tratamientos, entre otros. Lo anterior, se debe en gran parte al desarrollo de nuevas y mejores tecnologías, algunas de las cuales, incluso, han sido autorizadas para el diagnóstico y seguimiento de ciertos tipos de cáncer. No obstante, la utilización de biopsias líquidas sigue siendo objeto de estudio, pues a pesar de que son evidentes sus ventajas aun existen ciertas limitaciones que deben ser objeto de futuras investigaciones. Por lo tanto, debido a la importancia que ha cobrado este avance tecnológico a nivel mundial, se realizó una revisión de literatura con el fin de establecer el estado actual de la biopsia liquida en oncología, así como sus aplicaciones clínicas actuales, no sólo a nivel mundial sino también en Latinoamérica.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Sandra Perdomo, Universidad El Bosque

Instituto de Investigación en Nutrición, Genética y Metabolismo, Facultad de Medicina. Universidad El Bosque. Bogotá, Colombia.

Departamento de Patología y Laboratorios, Hospital Universitario Fundación Santafé de Bogotá

Lorena Montealegre-Páez, Universidad El Bosque

Instituto de Investigación en Nutrición, Genética y Metabolismo, Facultad de Medicina. Universidad El Bosque. Bogotá, Colombia.

Rafael Pacheco-Orozco, Universidad El Bosque

Instituto de Investigación en Nutrición, Genética y Metabolismo, Facultad de Medicina. Universidad El Bosque. Bogotá, Colombia.

Héctor Martínez-Gregorio, Laboratorio Nacional en Salud

Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala. Tlalnepantla, Estado de México, México.

Felipe Vaca-Paniagua, Laboratorio Nacional en Salud

Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala. Tlalnepantla, Estado de México, México.

Subdirección de Investigación Básica, Insituto Nacional de Cancerología. México

Javier Ardila, Universidad Nacional de Colombia

Instituto de Genética Humana, Universidad Nacional de Colombia. Bogotá, Colombia

Federico Cayol, Hospital Italiano

Hospital Italiano, Sección de Oncología. Buenos Aires, Argentina.

Javier Oliver, Hospitales Universitarios Regional y Virgen de la Victoria

Servicio de Oncologia Médica, Hospitales Universitarios Regional y Virgen de la Victoria. Málaga, España.

Instituto de Investigación Biomédica de Málaga. Málaga, España.

Cecilia Frecha, Consejo Superior de Investigaciones Cientificas y Técnicas

Consejo Superior de Investigaciones Cientificas y Técnicas. Argentina

Javier López, Clínica Colsanitas S.A

Laboratorio especializado de Clínica Colsanitas. Grupo INPAC. Clínica Colsanitas S.A. Bogotá, Colombia

David Carreño, Clínica Colsanitas S.A

Laboratorio especializado de Clínica Colsanitas. Grupo INPAC. Clínica Colsanitas S.A. Bogotá, Colombia

Referencias

Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23.

All cancers excl. non-melanoma skin cancer [Internet]. 2018 [cited 2018 Nov 4]. Available from: http://gco.iarc.fr/today

Perakis S, Speicher MR. Emerging concepts in liquid biopsies. BMC Med. 2017;15(1):1–12.

Haber DA, Velculescu VE. Blood-based analyses of cancer: Circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4(6):650–61.

Lianidou ES, Strati A, Markou A. Circulating tumor cells as promising novel biomarkers in solid cancers. Crit Rev Clin Lab Sci. 2014;51(3):160–71.

Graham Brock, Elena Castellanos-Rizaldos, Lan Hu, Christine Coticchia JS. Liquid biopsy for cancer screening, patient stratification and monitoring. Transl Cancer Res [Internet]. 2015 [cited 2018 Nov 6];4(3):280–90. Available from: http://tcr.amegroups.com/article/view/4546/pdf

Toss A, Mu Z, Fernandez S, Cristofanilli M. CTC enumeration and characterization: moving toward personalized medicine. Ann Transl Med [Internet]. 2014;2(11):108. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4245508&tool=pmcentrez&rendertype=abstract

Diaz LA, Bardelli A. Liquid biopsies: Genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.

Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA [Internet]. Vol. 17, Nature Reviews Cancer. 2017 [cited 2018 Nov 5]. p. 223–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28233803

Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer [Internet]. 2011;11(6):426–37. Available from: http://dx.doi.org/10.1038/nrc3066

Patel KM, Tsui DWY. The translational potential of circulating tumour DNA in oncology. Clin Biochem [Internet]. 2015;48(15):957–61. Available from: http://dx.doi.org/10.1016/j.clinbiochem.2015.04.005

Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities [Internet]. Vol. 18, Expert Review of Molecular Diagnostics. 2018 [cited 2018 Nov 6]. p. 133–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29307231

Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: Monitoring cancer-genetics in the blood [Internet]. Vol. 10, Nature Reviews Clinical Oncology. Nature Publishing Group; 2013 [cited 2018 Nov 6]. p. 472–84. Available from: http://www.nature.com/articles/nrclinonc.2013.110

Han X, Wang J, Sun Y. Circulating Tumor DNA as Biomarkers for Cancer Detection. Genomics, Proteomics Bioinforma. 2017;15(2):59–72.

Connolly ID, Li Y, Gephart MH, Nagpal S. The “Liquid Biopsy”: the Role of Circulating DNA and RNA in Central Nervous System Tumors [Internet]. Vol. 16, Current Neurology and Neuroscience Reports. 2016 [cited 2018 Nov 6]. p. 1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26838352

Hetta HF, El-Mahdy RI, Elkady A, Elkady A, Hosni A, Shafik EA, et al. Circulating miRNA-21 and miRNA-23a expression signature as potential biomarkers for early detection of non-small-cell lung cancer. MicroRNA [Internet]. 2019 Jan 15 [cited 2019 Jan 21];08. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30652656

ZEMBSKA A, JAWIARCZYK-PRZYBYŁOWSKA A, WOJTCZAK B, BOLANOWSKI M. MicroRNA Expression in the Progression and Aggressiveness of Papillary Thyroid Carcinoma. Anticancer Res [Internet]. 2018 Jan 27 [cited 2019 Jan 21];39(1):33–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30591438

Yu X, Liang J, Xu J, Li X, Xing S, Li H, et al. Identification and Validation of Circulating MicroRNA Signatures for Breast Cancer Early Detection Based on Large Scale Tissue-Derived Data. J Breast Cancer [Internet]. 2018 Dec [cited 2019 Jan 21];21(4):363. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30607157

Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.

Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J, Sausen M, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015;7(293):1–8.

Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, Dobbyn L, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci [Internet]. 2015;112(31):9704–9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1511694112

Ward DG, Bryan RT. Liquid biopsies for bladder cancer. Transl Androl Urol [Internet]. 2017;6(2):331–5. Available from: http://tau.amegroups.com/article/view/13921/14820

Buttitta F, Felicioni L, Del Grammastro M, Filice G, Di Lorito A, Malatesta S, et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin Cancer Res. 2013;19(3):691–8.

Malapelle U, Pisapia P, Rocco D, Smeraglio R, di Spirito M, Bellevicine C, et al. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res [Internet]. 2016 [cited 2018 Nov 26];5(5):505–10. Available from: http://dx.doi.org/10.21037/tlcr.2016.10.08

Alix-Panabières C, Pantel K. Technologies for detection of circulating tumor cells: Facts and vision [Internet]. Vol. 14, Lab on a Chip. Royal Society of Chemistry; 2014 [cited 2018 Nov 14]. p. 57–62. Available from: http://xlink.rsc.org/?DOI=C3LC50644D

Neumann MHD, Bender S, Krahn T, Schlange T. ctDNA and CTCs in Liquid Biopsy-Current Status and Where We Need to Progress. Comput Struct Biotechnol J [Internet]. 2018 [cited 2018 Nov 27];16:190–5. Available from: https://doi.org/10.1016/j.csbj.2018.05.002

Gascoyne PRC, Shim S. Isolation of circulating tumor cells by dielectrophoresis. Cancers (Basel) [Internet]. 2014 Mar 12 [cited 2019 Feb 7];6(1):545–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24662940

Balic M, Lin H, Williams A, Datar RH, Cote RJ. Progress in circulating tumor cell capture and analysis: implications for cancer management. 2012 [cited 2019 Feb 7]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391569/pdf/nihms380936.pdf

Alix-Panabières C. EPISPOT assay: Detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res [Internet]. 2012 [cited 2019 Feb 7];195:69–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22527495

Taylor SC, Laperriere G, Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci Rep [Internet]. 2017 Dec 25 [cited 2019 Feb 7];7(1):2409. Available from: http://www.nature.com/articles/s41598-017-02217-x

Finotti A, Allegretti M, Gasparello J, Giacomini P, Spandidos DA, Spoto G, et al. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review) [Internet]. Vol. 53, International Journal of Oncology. Spandidos Publications; 2018 [cited 2019 Feb 7]. p. 1395–434. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30085333

Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845–56.

Karachaliou N, Mayo-de-las-Casas C, Molina-Vila MA, Rosell R. Real-time liquid biopsies become a reality in cancer tratment. Ann Transl Med [Internet]. 2015 Mar [cited 2018 Nov 6];3(3):36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25815297

Aparicio S, Caldas C. The Implications of Clonal Genome Evolution for Cancer Medicine. N Engl J Med [Internet]. 2013;368(9):842–51. Available from: http://www.nejm.org/doi/10.1056/NEJMra1204892

Chu D, Park BH. Liquid biopsy: unlocking the potentials of cell-free DNA. Virchows Arch. 2017;471(2):147–54.

Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep [Internet]. 2013 May [cited 2019 Jan 31];13(5):345. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23532369

Kim WW, Ha TK, Bae SK. Clinical implications of the BRAF mutation in papillary thyroid carcinoma and chronic lymphocytic thyroiditis. J Otolaryngol - Head Neck Surg [Internet]. 2018 [cited 2019 Jan 31];47(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759356/pdf/40463_2017_Article_247.pdf

Lee SE, Hwang TS, Choi Y-L, Han HS, Kim WS, Jang MH, et al. Prognostic Significance of TERT Promoter Mutations in Papillary Thyroid Carcinomas in a BRAF (V600E) Mutation–Prevalent Population. Thyroid [Internet]. 2016 Jul [cited 2019 Jan 31];26(7):901–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27184112

Rapisuwon S, Vietsch EE, Wellstein A. Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J [Internet]. 2016;14:211–22. Available from: http://dx.doi.org/10.1016/j.csbj.2016.05.004

Gautschi O, Huegli B, Ziegler A, Gugger M, Stahel RA, Betticher DC, et al. Origin and prognostic value of circulating KRAS mutations in lung cancer patients. Cancer Lett [Internet]. 2007 Sep 8 [cited 2019 Mar 7];254(2):265–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17449174

Speicher MR, Pantel K. Tumor signatures in the blood [Internet]. Vol. 32, Nature Biotechnology. 2014 [cited 2018 Nov 14]. p. 441–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24811515

Corcoran RB, Chabner BA. Application of Cell-free DNA Analysis to Cancer Treatment. N Engl J Med [Internet]. 2018;379(18):1754–65. Available from: http://www.nejm.org/doi/10.1056/NEJMra1706174

Jung A, Kirchner T. Liquid biopsy in tumor genetic diagnosis. Dtsch Aerzteblatt Online [Internet]. 2018 [cited 2018 Nov 14];115:169–74. Available from: www.ema.europa.eu/ema

Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med [Internet]. 2018 Nov 7 [cited 2018 Nov 19];4921(November):1–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30404863

Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor {DNA} analysis detects minimal residual disease and predicts recurrence in patients with stage {II} colon cancer. Sci Transl Med. 2016;8(346):346ra92.

Francis G, Stein S. Circulating cell-free tumour DNA in the management of cancer. Vol. 16, International Journal of Molecular Sciences. 2015. p. 14122–42.

Altun E, Jewells VS, Fielding JR. Imaging in Oncology. In: Clinical Radiation Oncology [Internet]. Elsevier; 2016 [cited 2018 Nov 13]. p. 186–205.e3. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323240987000101

Andrés O. BS, David Ladrón DGH. Imágenes en oncología: generalidades y aplicaciones. Rev Médica Clínica Las Condes [Internet]. 2013;24(4):571–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0716864013701974

Tumor I, Antigen C. Serum Tumor Markers. 2003;1–8.

Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol [Internet]. 2012;6(2):140–6. Available from: http://dx.doi.org/10.1016/j.molonc.2012.01.010

Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res [Internet]. 2015 [cited 2018 Nov 13];4(3):256–69. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511498/pdf/nihms-708126.pdf

Mayeux R. Biomarkers: Potential Uses and Limitations. NeuroRx. 2004;1(2):182–8.

Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7(302):1–12.

Fernandez-Cuesta L, Perdomo S, Avogbe PH, Leblay N, Delhomme TM, Gaborieau V, et al. Identification of Circulating Tumor DNA for the Early Detection of Small-cell Lung Cancer. EBioMedicine [Internet]. 2016 Aug [cited 2019 Jan 31];10:117–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27377626

Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403).

Coombs CC, Gillis NK, Tan X, Berg JS, Ball M, Balasis ME, et al. Identification of Clonal Hematopoiesis Mutations in Solid Tumor Patients Undergoing Unpaired Next-Generation Sequencing Assays. Clin Cancer Res [Internet]. 2018 Dec 1 [cited 2019 Jan 31];24(23):5918–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29866652

Normando SRC, Delgado P de O, Rodrigues AKSB, David Filho WJ, Fonseca FLA, Cruz FJSM, et al. Circulating free plasma tumor DNA in patients with advanced gastric cancer receiving systemic chemotherapy. BMC Clin Pathol [Internet]. 2018 Dec 26 [cited 2019 Mar 7];18(1):12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30498396

Perdomo S, Avogbe PH, Foll M, Abedi-Ardekani B, Lescher Facciolla V, Anantharaman D, et al. Circulating tumor DNA detection in head and neck cancer: evaluation of two different detection approaches. Oncotarget [Internet]. 2017 Sep 22 [cited 2018 Nov 27];8(42):72621–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29069814

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin [Internet]. 2018 Nov [cited 2019 Mar 7];68(6):394–424. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30207593

Cardona AF, Arrieta O, Zapata MI, Rojas L, Wills B, Reguart N, et al. Acquired Resistance to Erlotinib in EGFR Mutation-Positive Lung Adenocarcinoma among Hispanics (CLICaP). Target Oncol [Internet]. 2017 Aug 15 [cited 2019 Mar 13];12(4):513–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28620690

NICE. First-line systemic anticancer treatment for advanced or metastatic non-small-cell lung cancer [Internet]. 2018 [cited 2019 Mar 13]. p. 1–14. Available from: https://pathways.nice.org.uk/pathways/lung-cancer#path=view%3A/pathways/lung-cancer/first-line-systemic-anticancer-treatment-for-advanced-or-metastatic-non-small-cell-lung-cancer.xml&content=view-node%3Anodes-chemotherapy

Metro G, Tazza M, Matocci R, Chiari R, Crinò L. Optimal management of ALK-positive NSCLC progressing on crizotinib [Internet]. Vol. 106, Lung Cancer. 2017 [cited 2019 Mar 13]. p. 58–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28285695

Van Cutsem E, Köhne C-H, Hitre E, Zaluski J, Chang Chien C-R, Makhson A, et al. Cetuximab and Chemotherapy as Initial Treatment for Metastatic Colorectal Cancer. N Engl J Med [Internet]. 2009 Apr 2 [cited 2019 Mar 13];360(14):1408–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19339720

Van Cutsem E, Köhne C-H, Láng I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab Plus Irinotecan, Fluorouracil, and Leucovorin As First-Line Treatment for Metastatic Colorectal Cancer: Updated Analysis of Overall Survival According to Tumor KRAS and BRAF Mutation Status. J Clin Oncol [Internet]. 2011 May 20 [cited 2019 Mar 13];29(15):2011–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21502544

Heinemann V, Fischer von Weikersthal L, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran S-E, et al. Randomized comparison of FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment of KRAS wild-type metastatic colorectal cancer: German AIO study KRK-0306 (FIRE-3). J Clin Oncol [Internet]. 2013 Jun 20 [cited 2019 Mar 13];31(18_suppl):LBA3506-LBA3506. Available from: http://ascopubs.org/doi/10.1200/jco.2013.31.18_suppl.lba3506

Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, et al. Fluorouracil, Leucovorin, and Oxaliplatin With and Without Cetuximab in the First-Line Treatment of Metastatic Colorectal Cancer. J Clin Oncol [Internet]. 2009 Feb 10 [cited 2019 Mar 13];27(5):663–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19114683

Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol [Internet]. 2011 Jul [cited 2019 Mar 13];22(7):1535–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21228335

Tveit KM, Guren T, Glimelius B, Pfeiffer P, Sorbye H, Pyrhonen S, et al. Phase III Trial of Cetuximab With Continuous or Intermittent Fluorouracil, Leucovorin, and Oxaliplatin (Nordic FLOX) Versus FLOX Alone in First-Line Treatment of Metastatic Colorectal Cancer: The NORDIC-VII Study. J Clin Oncol [Internet]. 2012 May 20 [cited 2019 Mar 13];30(15):1755–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22473155

Douillard J-Y, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Randomized, Phase III Trial of Panitumumab With Infusional Fluorouracil, Leucovorin, and Oxaliplatin (FOLFOX4) Versus FOLFOX4 Alone As First-Line Treatment in Patients With Previously Untreated Metastatic Colorectal Cancer: The PRIME Study. J Clin Oncol [Internet]. 2010 Nov 1 [cited 2019 Mar 13];28(31):4697–705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20921465

Diaz Jr LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature [Internet]. 2012 Jun 13 [cited 2019 Mar 13];486(7404):537–40. Available from: http://www.nature.com/articles/nature11219

Siena S, Sartore-Bianchi A, Garcia-Carbonero R, Karthaus M, Smith D, Tabernero J, et al. Dynamic molecular analysis and clinical correlates of tumor evolution within a phase II trial of panitumumab-based therapy in metastatic colorectal cancer. Ann Oncol [Internet]. 2018 Jan 1 [cited 2019 Mar 13];29(1):119–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28945848

National Institute for Health and Care Excellence NICE Guidelines. Managing advanced and metastatic colorectal cancer [Internet]. NICE Pathways. 2017 [cited 2019 Mar 13]. Available from: https://pathways.nice.org.uk/pathways/colorectal-cancer#path=view%3A/pathways/colorectal-cancer/managing-advanced-and-metastatic-colorectal-cancer.xml&content=view-node%3Anodes-biological-therapy-as-second-line-treatment-for-metastatic-disease

Nafi SNM, Generali D, Kramer-Marek G, Gijsen M, Strina C, Cappelletti M, et al. Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer. Oncotarget [Internet]. 2014 Aug 15 [cited 2019 Mar 13];5(15):5934–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25153719

Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O’Leary B, Kilburn L, et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol [Internet]. 2018 Jan 1 [cited 2019 Mar 13];29(1):145–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29045530

Ministerio de Salud y Protección Social, Instituto de Evaluación Tecnológica en Salud, Instituto Nacional de Cancerología. Guía de Práctica Clínica para la detección temprana, tratamiento integral, seguimiento y rehabilitación del cáncer de mama [Internet]. Colombia. 2017 [cited 2019 Mar 13]. Available from: http://gpc.minsalud.gov.co/gpc_sites/Repositorio/Conv_500/GPC_cancer_mama/gpc_cancer_mama_profesionales.aspx

National Institute for Health and Care Excellence. Advanced breast cancer overview - NICE Pathways [Internet]. NICE Pathways. 2016 [cited 2019 Mar 13]. Available from: https://pathways.nice.org.uk/pathways/advanced-breast-cancer#path=view%3A/pathways/advanced-breast-cancer/managing-advanced-breast-cancer.xml&content=view-node%3Anodes-hrpos-and-her2pos

Schafer JM, Bentrem DJ, Takei H, Gajdos C, Badve S, Jordan VC. A mechanism of drug resistance to tamoxifen in breast cancer. J Steroid Biochem Mol Biol [Internet]. 2002 Dec [cited 2019 Mar 13];83(1–5):75–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12650703

Agrawal A, Robertson JFR, Cheung KL, Gutteridge E, Ellis IO, Nicholson RI, et al. Biological effects of fulvestrant on estrogen receptor positive human breast cancer: short, medium and long-term effects based on sequential biopsies. Int J Cancer [Internet]. 2016 Jan 1 [cited 2019 Mar 13];138(1):146–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26178788

Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. N Engl J Med [Internet]. 2015 Feb 19 [cited 2019 Mar 13];372(8):724–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25693012

Penson DF, Armstrong AJ, Concepcion R, Agarwal N, Olsson C, Karsh L, et al. Enzalutamide Versus Bicalutamide in Castration-Resistant Prostate Cancer: The STRIVE Trial. J Clin Oncol [Internet]. 2016 Jun 20 [cited 2019 Mar 13];34(18):2098–106. Available from: http://ascopubs.org/doi/10.1200/JCO.2015.64.9285

Cataño Cataño JGCLS. Instituto Nacional de Cancerologia. Guía de práctica clínica ( GPC ) para la detección temprana , seguimiento y rehabilitación del cáncer de próstata [Internet]. [cited 2019 Mar 13]. Available from: www.colciencias.gov.co

National Institute for Health and Care Excellence (NICE). Treating hormone-relapsed metastatic prostate cancer. NICE pathways [Internet]. 2018 [cited 2019 Mar 13]. 13 p. Available from: https://pathways.nice.org.uk/pathways/prostate-cancer#path=view%3A/pathways/prostate-cancer/treating-hormone-relapsed-metastatic-prostate-cancer.xml&content=view-index

Arrieta O, Cardona AF, Martín C, Más-López L, Corrales-Rodríguez L, Bramuglia G, et al. Updated Frequency of EGFR and KRAS Mutations in NonSmall-Cell Lung Cancer in Latin America: The Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). J Thorac Oncol [Internet]. 2015 May [cited 2019 Mar 7];10(5):838–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25634006

Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the . Arch Pathol Lab Med [Internet]. 2018 Mar [cited 2019 Mar 7];142(3):321–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29355391

Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov [Internet]. 2017 Dec [cited 2019 Mar 7];7(12):1394–403. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28899864

Chen S, Zhao J, Cui L, Liu Y. Urinary circulating DNA detection for dynamic tracking of EGFR mutations for NSCLC patients treated with EGFR-TKIs. Clin Transl Oncol [Internet]. 2017 Mar 28 [cited 2019 Mar 7];19(3):332–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27468867

Arrieta O, Cardona AF, Bramuglia G, Cruz-Rico G, Corrales L, Martín C, et al. Molecular Epidemiology of ALK Rearrangements in Advanced Lung Adenocarcinoma in Latin America. Oncology [Internet]. 2018 Nov 26 [cited 2019 Mar 7];1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30476928

Niu X, Perdomo S, Blackhall F. Molecular resistance mechanisms of ALK inhibitors and implications for therapeutic management of ALK -rearranged lung cancer patients. Transl Cancer Res [Internet]. 2017 [cited 2019 Mar 7];6(2):S239–45. Available from: http://tcr.amegroups.com/article/view/12809/html

De Mattos-Arruda L, Caldas C. Cell-free circulating tumour DNA as a liquid biopsy in breast cancer. Mol Oncol [Internet]. 2016 Mar [cited 2019 Mar 7];10(3):464–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26776681

Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O’Leary B, Kilburn L, et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol [Internet]. 2018 Jan 1 [cited 2019 Mar 7];29(1):145–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29045530

Beddowes E, Sammut SJ, Gao M, Caldas C. Predicting treatment resistance and relapse through circulating DNA. The Breast [Internet]. 2017 Aug [cited 2019 Mar 7];34:S31–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28694015

Pinto JA, Saravia CH, Flores C, Araujo J, Martínez D, Schwarz LJ, et al. Precision medicine for locally advanced breast cancer: frontiers and challenges in Latin America. Ecancermedicalscience [Internet]. 2019 Jan 22 [cited 2019 Mar 7];13:896. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30792813

Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol [Internet]. 2016 Aug [cited 2019 Mar 7];27(8):1386–422. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27380959

López RI, Castro JL, Cedeño H, Cisneros D, Corrales L, González-Herrera I, et al. Consensus on management of metastatic colorectal cancer in Central America and the Caribbean: San José, Costa Rica, August 2016. ESMO Open [Internet]. 2018 Mar 15 [cited 2019 Mar 7];3(3):e000315. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29636987

Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med [Internet]. 2016 Jul 6 [cited 2019 Mar 7];8(346):346ra92-346ra92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27384348

de Figueiredo Barros BD, Kupper BEC, Aguiar Junior S, de Mello CAL, Begnami MD, Chojniak R, et al. Mutation Detection in Tumor-Derived Cell Free DNA Anticipates Progression in a Patient With Metastatic Colorectal Cancer. Front Oncol [Internet]. 2018 Aug 10 [cited 2019 Mar 11];8:306. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30148116

Markowski MC, Silberstein JL, Eshleman JR, Eisenberger MA, Luo J, Antonarakis ES. Clinical Utility of CLIA-Grade AR-V7 Testing in Patients With Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol [Internet]. 2017 Oct [cited 2019 Mar 7];2017(1):1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29170762

Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol [Internet]. 2015 Aug 1 [cited 2019 Mar 7];1(5):582. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26181238

Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY Study. J Clin Oncol [Internet]. 2019 Mar 13 [cited 2019 Apr 8];JCO.18.01731. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30865549

Lallous N, Volik S V., Awrey S, Leblanc E, Tse R, Murillo J, et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol [Internet]. 2016 Dec 26 [cited 2019 Mar 7];17(1):10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26813233

Publicado
2020-11-30
Cómo citar
[1]
Perdomo, S., Montealegre-Páez, L., Pacheco-Orozco, R., Martínez-Gregorio, H., Vaca-Paniagua, F., Ardila, J., Cayol, F., Oliver, J., Frecha, C., López, J. y Carreño, D. 2020. La biopsia líquida en el diagnóstico y monitoreo de pacientes oncológicos: oportunidades y retos en Latinoamérica. Revista Colombiana de Cancerología. 24, 4 (nov. 2020), 164-77. DOI:https://doi.org/10.35509/01239015.44.
Sección
Artículos de revisión