Vías de carcinogénesis colorrectal y sus implicaciones clínicas

  • María C. Sanabria Instituto Nacional de Cancerología
  • Adriana Umaña Universidad Nacional de Colombia
  • Martha L. Serrano Universidad Nacional de Colombia
  • Myriam Sánchez Universidad Nacional de Colombia
  • Jorge Mesa Instituto Nacional de Cancerología
  • Gustavo A. Hernández Instituto Nacional de Cancerología
Palabras clave: Focos de criptas aberrantes, neoplasias colorrectales, pólipos del colon, inestabilidad cromosómica, inestabilidad de microsatélites

Resumen

El cáncer colorrectal (CCR) es la cuarta causa de mortalidad por cáncer en Colombia y en el mundo, en ambos sexos; por esta razón, es considerado un problema de salud pública. El CCR es altamente heterogéneo en su fenotipo y genotipo, lo que está en relación con las diferentes vías de carcinogénesis descritas que implican diferentes mecanismos de progresión y agresividad de la enfermedad. Las vías clásicas, supresora y mutadora, se caracterizan por una serie de alteraciones genéticas relacionadas con los cambios fenotípicos de la progresión morfológica en la secuencia adenoma-carcinoma. Las vías alternas, originadas por mutaciones en los genes, BRAF y KRAS, se relacionan con la progresión de pólipo aserrado a carcinoma. Conocer estas vías es muy importante para comprender la enfermedad de manera integral y profundizar en el estudio de sus mecanismos de control, que incluyen: diagnóstico temprano, tratamiento y seguimiento.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

María C. Sanabria, Instituto Nacional de Cancerología

Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia
Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D. C., Colombia

Adriana Umaña, Universidad Nacional de Colombia

Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D. C., Colombia

Martha L. Serrano, Universidad Nacional de Colombia

Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D. C., Colombia

Myriam Sánchez, Universidad Nacional de Colombia

Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D. C., Colombia

Jorge Mesa, Instituto Nacional de Cancerología

Departamento de Patología, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia

Gustavo A. Hernández, Instituto Nacional de Cancerología

Grupo de Investigación Epidemiológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia

Referencias

Ferlay J, Shin HR, Bray F, et al. GLOBOCAN 2008, Cancer incidence and mortality worldwide IARC CancerBase No 10 [internet]. 2008 [citado: 16 de agosto de 2012]. Disponible en: http://globocan.iarc.fr

Piñeros M, Pardo C, Gamboa O. Atlas de mortalidad por cáncer en Colombia. Bogotá: Imprenta Nacional; 2010.

Van de Wetering M, Sancho E, Verweij C, et al. The betacatenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241-50.

https://doi.org/10.1016/S0092-8674(02)01014-0

Graham TA, Humphries A, Sanders T, et al. Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. Gastroenterology. 2011;140:1241-50.

https://doi.org/10.1053/j.gastro.2010.12.036

Fevr T, Robine S, Louvard D, et al. Wnt/betacatenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol. 2007;27:7551-9.

https://doi.org/10.1128/MCB.01034-07

Kosinski C, Li VS, Chan AS, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A. 2007;104;15418-23.

https://doi.org/10.1073/pnas.0707210104

Smith KJ, Johnson KA, Bryan TM, et al. The APC gene product in normal and tumor cells. Proc Natl Acad Sci U S A. 1993;90:2846-50.

https://doi.org/10.1073/pnas.90.7.2846

Sinicrope FA, Ruan SB, Cleary KR, et al. Bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res. 1995;55:237-41.

Roncucci L, Pedroni M, Vaccina F, et al. Aberrant crypt foci in colorectal carcinogenesis. Cell and crypt dynamics. Cell proliferation. 2001;33:1-18.

https://doi.org/10.1046/j.1365-2184.2000.00159.x

Colina F, Ibarrola C. Protocolo e información sistematizada para los estudios histopatológicos relacionados con el carcinoma Colorrectal. Rev Esp Patol. 2004;37:73-90.

Konishi F, Morson BC. Pathology of colorectal adenomas: a colonoscopic survey. J Clin Pathol. 1982;35:830-41.

https://doi.org/10.1136/jcp.35.8.830

Higuchi T, Sugihara K, Jass JR. Demographic and pathological characteristics of serrated polyps of colorectum. Histopathology. 2005;47:32-40.

https://doi.org/10.1111/j.1365-2559.2005.02180.x

Snover D, Ahnen D, Burt R. Serrated polyps of the colon and rectum and serrated ('hyperplastic') polyposis. En: Bozman FT, Carneiro F, Hruban RH (Eds). WHO Classification of Tumours. Pathology and Genetics. Tumours of the Digestive System. 4th ed. Berlin: Springer-Verlag; 2010.

Torlakovic EE, Gómez JD, Driman DK, et al. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA). Am J Surg Pathol. 2008;32:21-9.

https://doi.org/10.1097/PAS.0b013e318157f002

Iacopetta B. Mini review-Are there two sides to colorectal cancer? Int J Cancer. 2002;101:403-8.

https://doi.org/10.1002/ijc.10635

Li FY, Lai MD. Colorectal cancer, one entity or three. J Zhejiang Univ Sci B. 2009;10:219-29.

https://doi.org/10.1631/jzus.B0820273

Azzoni C, Bottarelli L, Campanini N, et al. Distinct molecular patterns based on proximal and distal sporadic colorectal cancer: arguments for different mechanisms in the tumorigenesis. Int J Colorectal Dis. 2007;22:115-26.

https://doi.org/10.1007/s00384-006-0093-x

Delattre O, Olschwang S, Law DJ, et al. Multiple genetic alterations in distal and proximal colorectal cancer. Lancet. 1989;2:353-6.

https://doi.org/10.1016/S0140-6736(89)90537-0

Fujita K, Yamamoto H, Matsumoto T, et al. Sessile serrated adenoma with early neoplastic progression: a clinicopathologic and molecular study. Am J Surg Pathol. 2011;35:295-304.

https://doi.org/10.1097/PAS.0b013e318205df36

Hawkins N, Norrie M, Cheong K, et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002;122:1376-87.

https://doi.org/10.1053/gast.2002.32997

Liu LU, Holt PR, Krivosheyev V, et al. Human right and left colon differ in epithelial cell apoptosis and in expression of Bak, a pro-apoptotic Bcl-2 homologue. Gut. 1999;45:45-50.

https://doi.org/10.1136/gut.45.1.45

Reichmann A, Levin B, Martin P. Human large-bowel cancer: correlation of clinical and histopathological features with banded chromosomes. Int J Cancer. 1982;29:625-9.

https://doi.org/10.1002/ijc.2910290605

Søreide K, Nedrebø BS, Knapp JC, et al. Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: potential implications for the surgical oncologist. Surgical Oncology. 2009;18:31-50.

https://doi.org/10.1016/j.suronc.2008.06.006

Van Puijenbroek M. Molecular pathology of colorectal cancer predisposing síndromes. Leiden, Holanda: Leiden University; 2008.

Gunter MJ, Leitzmann MF. Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem. 2006;17:145-56.

https://doi.org/10.1016/j.jnutbio.2005.06.011

Hauret KG, Bostick RM, Matthews CE, et al. Physical activity and reduced risk of incident sporadic colorectal adenomas: observational support for mechanisms involving energy balance and inflammation modulation. Am J Epidemiol. 2004;159:983-92.

https://doi.org/10.1093/aje/kwh130

Curtin K, Wolff RK, Herrick JS, et al. Exploring multilocus associations of inflammation genes and colorectal cancer risk using hapConstructor. BMC Med Genet. 2010 ;11:170.

https://doi.org/10.1186/1471-2350-11-170

Houlston RS, Cheadle J, Dobbins SE, et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010;42:973-7.

https://doi.org/10.1038/ng.670

Houlston RS, Tomlinson IPM. Polymorphisms and colorectal tumor risk. Gastroenterology. 2001;121:282-301.

https://doi.org/10.1053/gast.2001.26265

Kury S, Buecher B, Robiou-du-Pont S, et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study. BMC Cancer. 2008;8:326.

https://doi.org/10.1186/1471-2407-8-326

Pomerantz MM, Ahmadiyeh N, Jia L, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41:882-4.

https://doi.org/10.1038/ng.403

von Holst S, Picelli S, Edler D, et al. Association studies on 11 published colorectal cancer risk loci. Br J Cancer. 2010;103:575-80.

https://doi.org/10.1038/sj.bjc.6605774

Webb EL, Rudd MF, Sellick GS, et al. Search for low penetrance alleles for colorectal cancer through a scan

of 1467 non-synonymous SNPs in 2575 cases and 2707 controls with validation by kin-cohort analysis of 14 704 first-degree relatives. Hum Mol Genet. 2006;15:3263-71.

https://doi.org/10.1093/hmg/ddl401

Galiano MT. Cáncer colorrectal (CCR). Rev Colomb Gastroenterol. 2005;20:43-53.

Eide TJ. Prevalence and morphological features of adenomas of the large intestine in individuals with and without colorectal carcinoma. Histopathology. 1986;10:111-8.

https://doi.org/10.1111/j.1365-2559.1986.tb02467.x

Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Eng J Med. 1988;319:525-32.

https://doi.org/10.1056/NEJM198809013190901

Liu B, Nicolaides NC, Markowitz S, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995;9:48-55.

https://doi.org/10.1038/ng0195-48

Moran A, Ortega P, de Juan C, et al. Differential colorectal carcinogenesis: Molecular basis and clinical relevance. World J Gastrointest Oncol. 2010;2:151-8.

https://doi.org/10.4251/wjgo.v2.i3.151

Kim IJ, Kang HC, Jang SG, et al. Oligonucleotide microarray analysis of distinct gene expression patterns in colorectal cancer tissues harboring BRAF and K-ras mutations. Carcinogenesis. 2006;27:392-404.

https://doi.org/10.1093/carcin/bgi237

Scholer-Dahirel A, Schlabach MR, Loo A, et al. Maintenance of adenomatous polyposis coli (APC)- mutant colorectal cancer is dependent on Wnt/ betacatenin signaling. Proc Natl Acad Sci U S A. 2011;108:17135-40.

https://doi.org/10.1073/pnas.1104182108

Yuan P, Sun MH, Zhang JS, et al. APC and K-ras gene mutation in aberrant crypt foci of human colon. World J Gastroenterol. 2001;7:352-6.

https://doi.org/10.3748/wjg.v7.i3.352

Haigis KM, Kendall KR, Wang Y, et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40:600-8.

https://doi.org/10.1038/ng.115

Fearon ER, Cho KR, Nigro JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990;247:49-56.

https://doi.org/10.1126/science.2294591

Gallione C, Aylsworth AS, Beis J, et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am J Med Genet A. 2010;152A:333-9.

https://doi.org/10.1002/ajmg.a.33206

Herbst A, Bommer GT, Kriegl L, et al. ITF-2 is disrupted via allelic loss of chromosome 18q21, and ITF-2B expression is lost at the adenoma-carcinoma transition. Gastroenterology. 2009;137:639-48.

https://doi.org/10.1053/j.gastro.2009.04.049

Hibi K, Mizukami H, Shirahata A, et al. Aberrant methylation of the netrin-1 receptor genes UNC5C and DCC detected in advanced colorectal cancer. World J Surg. 2009;33:1053-7.

https://doi.org/10.1007/s00268-008-9909-x

Langeveld D, Van Hattem WA, de Leng WW, et al. SMAD4 immunohistochemistry reflects genetic status in juvenile polyposis syndrome. Clin Cancer Res. 2010;16:4126-34.

https://doi.org/10.1158/1078-0432.CCR-10-0168

Kamada R, Nomura T, Anderson CW, et al. Cancerassociated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem. 2011;286:252-8.

https://doi.org/10.1074/jbc.M110.174698

Kouidou S, Malousi A, Maglaveras N. Li-Fraumeni and Li- Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements. Mol Carcinog. 2009;48:895-902.

https://doi.org/10.1002/mc.20537

Cooke T, Kirkham N, Stainthorp DH, et al. Detection of early neoplastic changes in experimentally induced colorectal cancer using scanning electron microscopy and cell kinetic studies. Gut. 1984;25:748-55.

https://doi.org/10.1136/gut.25.7.748

Hu Y, Le Leu RK, Young GP. Detection of K-ras mutations in azoxymethane-induced aberrant crypt foci in mice using LNA-mediated real-time PCR clamping and mutantspecific probes. Mutat Res. 2009;677:27-32.

https://doi.org/10.1016/j.mrgentox.2009.05.003

Ochiai M, Ushigome M, Fujiwara K, et al. Characterization of dysplastic aberrant crypt foci in the rat colon induced by 2-amino-1-methyl-6- phenylimidazo[4,5-b] pyridine. Am J Pathol. 2003;163:1607-14.

https://doi.org/10.1016/S0002-9440(10)63517-1

Kim IJ, Kang HC, Park JH, et al. Development and applications of a beta-catenin oligonucleotide microarray: beta- catenin mutations are dominantly found in the proximal colon cancers with microsatellite instability. Clin Cancer Res. 2003;9:2920-5.

Souza RF, Wang S, Thakar M, et al. Expression of the wildtype insulin-like growth factor II receptor gene suppresses growth and causes death in colorectal carcinoma cells. Oncogene. 1999;18:4063-8.

https://doi.org/10.1038/sj.onc.1202768

Yashiro M, Hirakawa K, Boland CR. Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability. BMC Cancer. 2010;10:303.

https://doi.org/10.1186/1471-2407-10-303

Narayan S, Roy D. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer. 2003;2:41.

https://doi.org/10.1186/1476-4598-2-41

Samowitz WS, Holden JA, Curtin K, et al. Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer. Am J Pathol. 2001;158:1517-24.

https://doi.org/10.1016/S0002-9440(10)64102-8

Olschwang S, Hamelin R, Laurent-Puig P, et al. Alternative genetic pathways in colorectal carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America. 1997;94:12122.

https://doi.org/10.1073/pnas.94.22.12122

Kim KM, Lee EJ, Kim YH, et al. KRAS mutations in traditional serrated adenomas from Korea herald an aggressive phenotype. Am J Surg Pathol. 2010;34:667-75.

https://doi.org/10.1097/PAS.0b013e3181d40cb2

Azimuddin K, Stasik JJ, Khubchandani IT, et al. Hy- perplastic polyps: "more than meets the eye"? Report of sixteen cases. Dis Colon Rectum. 2000;43:1309-13.

https://doi.org/10.1007/BF02237443

Longacre TA, Fenoglio-Preiser CM. Mixed hyperplastic adenomatous polyps/serrated adenomas. A distinct form of colorectal neoplasia. Am J Surg Pathol. 1990;14:524-37.

https://doi.org/10.1097/00000478-199006000-00003

Hawkins NJ, Ward RL. Sporadic colorectal cancers with microsatellite instability and their possible origin in hyperplastic polyps and serrated adenomas. J Natl Cancer Inst. 2001;93:1307-13.

https://doi.org/10.1093/jnci/93.17.1307

Jeevaratnam P, Cottier DS, Browett PJ, et al. Familial giant hyperplastic polyposis predisposing to colorectal cancer: a new hereditary bowel cancer syndrome. J Pathol. 1996;179:20-5.

https://doi.org/10.1002/(SICI)1096-9896(199605)179:1<20::AID-PATH538>3.0.CO;2-C

O'Brien MJ, Yang S, Mack C, et al. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol. 2006;30:1491-501.

https://doi.org/10.1097/01.pas.0000213313.36306.85

Kalady MF, Jarrar A, Leach B, et al. Defining phenotypes and cancer risk in hyperplastic polyposis syndrome. Dis Colon Rectum. 2011;54:164-70.

https://doi.org/10.1007/DCR.0b013e3181fd4c15

Lu FI, Van Niekerk de W, Owen D, et al. Longitudinal outcome study of sessile serrated adenomas of the colorectum: an increased risk for subsequent right-sided colorectal carcinoma. Am J Surg Pathol. 2010;34:927-34.

https://doi.org/10.1097/PAS.0b013e3181e4f256

Musulén E, López-Martos R, Sanz C, et al. Clinicopathological and morphological characteristics of colorectal carcinoma in hyperplastic polyposis syndrome. Rev Esp Patol. 2011;44:75-82.

https://doi.org/10.1016/j.patol.2011.02.014

Sarli L, Bottarelli L, Bader G, et al. Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis Colon Rectum. 2004;47:1467-82.

https://doi.org/10.1007/s10350-004-0628-6

Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342:69-77.

https://doi.org/10.1056/NEJM200001133420201

Samowitz WS, Curtin K, Ma KN, et al. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol Biomarkers Prev. 2001;10:917-23.

Liu XQ, Rajput A, Geng L, et al. Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo. J Biol Chem. 2011;286:16082-90.

https://doi.org/10.1074/jbc.M111.221697

Shima K, Morikawa T, Yamauchi M, et al. TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One. 2011;6:e25062.

https://doi.org/10.1371/journal.pone.0025062

Elsaleh H, Iacopetta B. Microsatellite instability is a predictive marker for survival benefit from adjuvant chemotherapy in a population-based series of stage III colorectal carcinoma. Clin Colorectal Cancer. 2001;1:104-9.

https://doi.org/10.3816/CCC.2001.n.010

Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23:609-18.

https://doi.org/10.1200/JCO.2005.01.086

Benatti P, Gafa R, Barana D, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11:8332-40.

https://doi.org/10.1158/1078-0432.CCR-05-1030

Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247-57.

https://doi.org/10.1056/NEJMoa022289

Shaukat A, Arain M, Thaygarajan B, et al. Is BRAF mutation associated with interval colorectal cancers? Dig Dis Sci. 2010;55:2352-6.

https://doi.org/10.1007/s10620-010-1182-9

Aust DE, Baretton GB. Serrated polyps of the colon and rectum (hyperplastic polyps, sessile serrated adenomas, traditional serrated adenomas, and mixed polyps)-proposal for diagnostic criteria. Virchows Arch. 2010;457:291-7.

https://doi.org/10.1007/s00428-010-0945-1

Huang CS, Farraye FA, Yang S, et al. The clinical significance of serrated polyps. Am J Gastroenterol. 2010;106:229-40; quiz 41.

https://doi.org/10.1038/ajg.2010.429

Lazarus R, Junttila OE, Karttunen TJ, et al. The risk of metachronous neoplasia in patients with serrated adenoma. Am J Clin Pathol. 2005;123:349-59.

https://doi.org/10.1309/VBAGV3BR96N2EQTR

Young J, Jenkins M, Parry S, et al. Serrated pathway colorectal cancer in the population: genetic consideration. Gut. 2007;56:1453-9.

https://doi.org/10.1136/gut.2007.126870

Lascorz J, Forsti A, Chen B, et al. Genome-wide association study for colorectal cancer identifies risk polymorphisms in German familial cases and implicates MAPK signalling pathways in disease susceptibility. Carcinogenesis. 2010;31:1612-9.

https://doi.org/10.1093/carcin/bgq146

Pittman AM, Naranjo S, Jalava SE, et al. Allelic variation at the 8q23.3 colorectal cancer risk locus functions as a cis-acting regulator of EIF3H. PLoS Genet. 2010;6 pii: e10 01126.

https://doi.org/10.1371/journal.pgen.1001126

Tenesa A, Farrington SM, Prendergast JG, et al. Genomewide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008;40:631-7.

https://doi.org/10.1038/ng.133

Tomlinson I, Webb E, Carvajal-Carmona L, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39:984-8.

https://doi.org/10.1038/ng2085

Tomlinson IP, Webb E, Carvajal-Carmona L, et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 2008;40:623-30.

https://doi.org/10.1038/ng.111

Tuupanen S, Turunen M, Lehtonen R, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41:885-90.

https://doi.org/10.1038/ng.406

Zanke BW, Greenwood CM, Rangrej J, et al. Genomewide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet. 2007;39:989-94.

https://doi.org/10.1038/ng2089

Bertucci F, Salas S, Eysteries S, et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene. 2004;23:1377-91.

https://doi.org/10.1038/sj.onc.1207262

Carrer A, Zacchigna S, Balani A, et al. Expression profiling of angiogenic genes for the characterisation of colorectal carcinoma. Eur J Cancer. 2008;44:1761-9.

https://doi.org/10.1016/j.ejca.2008.05.014

Galamb O, Sipos F, Solymosi N, et al. Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results. Cancer Epidemiol Biomarkers Prev. 2008;17:2835-45.

https://doi.org/10.1158/1055-9965.EPI-08-0231

Glebov OK, Rodríguez LM, Soballe P, et al. Gene expression patterns distinguish colonoscopically isolated human aberrant crypt foci from normal colonic mucosa. Cancer Epidemiology Biomarkers & Prevention. 2006;15:2253-62.

https://doi.org/10.1158/1055-9965.EPI-05-0694

Han M, Liew CT, Zhang HW, et al. Novel blood-based, five-gene biomarker set for the detection of colorectal cancer. Clin Cancer Res. 2008;14:455-60.

https://doi.org/10.1158/1078-0432.CCR-07-1801

Mazzanti R, Solazzo M, Fantappie O, et al. Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1329-38.

https://doi.org/10.1152/ajpgi.00563.2005

Ibrahim AE, Arends MJ, Silva AL, et al. Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression. Gut. 2011;60:499-508.

https://doi.org/10.1136/gut.2010.223602

Vaughn CP, Wilson AR, Samowitz WS. Quantitative evaluation of CpG island methylation in hyperplastic polyps. Mod Pathol. 2010;23:151-6.

https://doi.org/10.1038/modpathol.2009.150

Publicado
2020-09-01
Cómo citar
[1]
Sanabria, M.C., Umaña, A., L. Serrano, M., Sánchez, M., Mesa, J. y Hernández, G.A. 2020. Vías de carcinogénesis colorrectal y sus implicaciones clínicas. Revista Colombiana de Cancerología. 16, 3 (sep. 2020), 170-181.
Sección
Artículos de revisión