Compuestos citotóxicos de origen vegetal y su relación con proteínas inhibidoras de apoptosis (IAP)

Autores/as

  • Diego Ricardo Muñoz Cendales Universidad Nacional de Colombia
  • Luis Enrique Cuca Suárez Universidad Nacional de Colombia

Palabras clave:

Cáncer, Productos naturales, Apoptosis, Inhibidor de las proteínas de la apoptosis, Caspasas

Resumen

Los productos naturales han sido la fuente más representativa en la obtención de agentes terapéuticos para el tratamiento del cáncer y su enorme contribución se reconoce en el descubrimiento de nuevas moléculas citotóxicas con variados mecanismos de acción.
La mayoría de medicamentos utilizados para tratar el cáncer son poco selectivos y presentan altos niveles de resistencia y toxicidad, afectando considerablemente el pronóstico de vida en pacientes con esta enfermedad. Este artículo revisa los principios activos obtenidos de fuentes vegetales para el tratamiento del cáncer y sus distintos mecanismos de acción, abordando los avances más recientes en dianas terapéuticas como las proteínas inhibidoras de apoptosis (IAP) y algunas moléculas naturales estructuralmente sencillas que se encuentran en diferentes fases de estudio clínico y que son interesantes a nivel farmacológico debido a su alta selectividad, baja toxicidad y gran potencial terapéutico frente a distintos tipos de cáncer.

Biografía del autor/a

Diego Ricardo Muñoz Cendales, Universidad Nacional de Colombia

Laboratorio de Investigación en Productos Naturales Vegetales, Departamento de Química, Universidad Nacional de Colombia, Doctorado en Ciencias Químicas, Universidad Nacional de Colombia, Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, D. C., Colombia

Luis Enrique Cuca Suárez, Universidad Nacional de Colombia

Laboratorio de Investigación en Productos Naturales Vegetales, Departamento de Química, Universidad Nacional de Colombia, Bogotá, D. C., Colombia

Referencias bibliográficas

Lee KH. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J Nat Prod. 2010;73(3):500-16.

https://doi.org/10.1021/np900821e

Dobbelstein M, Moll U. Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Rev Drug Discov. 2014;13(3):179-96.

https://doi.org/10.1038/nrd4201

Fu H, He J, Mei F, Zhang Q, Hara Y, Ryota S, et al. Lung cancer inhibitory effect of epigallocatechin-3-gallate is dependent on its presence in a complex mixture (polyphenon E). Cancer Prev Res(Phila). 2009;2(6):531-7.

https://doi.org/10.1158/1940-6207.CAPR-08-0185

WHO. World Cancer Report 2014. Lyon (France): International Agency for Research on Cancer; 2014.

Huryn DM, Wipf P. Natural product chemistry and anticancer drug discovery. Cancer Drug Design and Discovery. New York: Academic Press; 2008. p. 107-30.

https://doi.org/10.1016/B978-012369448-5.50008-2

Mazzio E, Soliman K. In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res. 2009;23(3):385-98.

https://doi.org/10.1002/ptr.2636

Appendino G, Fontana G, Pollastro F, Lew M, Hung-Wen L. Natural Products Drug Discovery. Comprehensive Natural Products II. Oxford: Elsevier; 2010. p. 205-36.

https://doi.org/10.1016/B978-008045382-8.00064-2

Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF- B, inflammation and cancer. Nat Rev Cancer. 2010;10(8):561-74.

https://doi.org/10.1038/nrc2889

Dong FY, Jiang RW. Research progress of the natural products against prostate cancer. Chinese Journal of Natural Medicines. 2011;9(2):81-9.

Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670-95.

https://doi.org/10.1016/j.bbagen.2013.02.008

Calvert H. Cancer Drug Design and Discovery. En: Neidle S, editor. Cancer Drug Design and Discovery. Second Edition San Diego: Academic Press; 2014. p. 371.

https://doi.org/10.1016/B978-0-12-396521-9.06001-0

Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109(7):3012-43.

https://doi.org/10.1021/cr900019j

Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461-77.

https://doi.org/10.1021/np068054v

Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311-35.

https://doi.org/10.1021/np200906s

Rabbani-Chadegani A, Chamani E, Hajihassan Z. The effect of vinca alkaloid anticancer drug, vinorelbine, on chromatin and histone proteins in solution. Eur J Pharmacol. 2009;613(1-3):34-8.

https://doi.org/10.1016/j.ejphar.2009.04.040

Hitt E. Homoharringtonine effective in CML patients. Lancet Oncol. 2002;3(5):259.

https://doi.org/10.1016/S1470-2045(02)00740-4

Cragg GM, Kingston D, Newman DJ. Anticancer Agents from Natural Products. London. 2005.

https://doi.org/10.1201/9781420039658

Barbosa EG, Bega LA, Beatriz A, Sarkar T, Hamel E, do Amaral MS, et al. A diaryl sulfide, sulfoxide, and sulfone bearing structural similarities to combretastatin A-4. Eur J Med Chem. 2009;44(6):2685-8.

https://doi.org/10.1016/j.ejmech.2008.12.018

Gioti K, Tenta R. Bioactive Natural Products against Prostate Cancer: Mechanism of Action and Autophagic/Apoptotic Molecular Pathways. Planta Med. 2015;81(7):543-62.

https://doi.org/10.1055/s-0035-1545845

Singh M, Kaur M, Silakari O. Flavones: An important scaffold for medicinal chemistry. Eur J Med Chem. 2014;84(0):206-39.

https://doi.org/10.1016/j.ejmech.2014.07.013

Alvarez EA, Wolfson AH, Pearson JM, Crisp MP, Mendez LE, Lambrou NC, et al. A phase I study of docetaxel as a radio-sensitizer for locally advanced squamous cell cervical cancer. Gynecol Oncol. 2009;113(2):195-9.

https://doi.org/10.1016/j.ygyno.2008.12.033

Biganzoli L, Licitra S, Moretti E, Pestrin M, Zafarana E, Di Leo A. Taxanes in the elderly: Can we gain as much and be less toxic? Crit Rev Oncol Hematol. 2009;70(3):262-71.

https://doi.org/10.1016/j.critrevonc.2008.07.017

Kingston DG. A natural love of natural products. J Org Chem. 2008;73(11):3975-84.

https://doi.org/10.1021/jo800239a

Shah U, Shah R, Acharya S, Acharya N. Novel anticancer agents from plant sources. Chinese Journal of Natural Medicines. 2013;11(1):16-23.

https://doi.org/10.1016/S1875-5364(13)60002-3

Khazir J, Mir BA, Pilcher L, Riley DL. Role of plants in anticancer drug discovery. Phytochemistry Letters. 2014;7(0):173-81.

https://doi.org/10.1016/j.phytol.2013.11.010

McLaughlin JL. Paw paw and cancer: annonaceous acetogenins from discovery to commercial products. J Natural Prod. 2008;71(7):1311-21.

https://doi.org/10.1021/np800191t

Coothankandaswamy V, Liu Y, Mao SC, Morgan JB, Mahdi F, Jekabsons MB, et al. The alternative medicine pawpaw and its acetogenin constituents suppress tumor angiogenesis via the HIF-1/VEGF pathway. J Nat Prod. 2010;73(5):956-61.

https://doi.org/10.1021/np100228d

Paramasivam A, Sambantham S, Shabnam J, Raghunandhakumar S, Anandan B, Rajiv R, et al. Anti-cancer effects of thymoquinone in mouse neuroblastoma (Neuro-2a) cells through caspase-3 activation with down-regulation of XIAP. Toxicol Lett. 2012;213(2):151-9.

https://doi.org/10.1016/j.toxlet.2012.06.011

Nobili S, Lippi D,Witort E, Donnini M, Bausi L, Mini E, et al. Natural compounds for cancer treatment and prevention. Pharmacol Res. 2009;59(6):365-78.

https://doi.org/10.1016/j.phrs.2009.01.017

NCI. Developmental Therapeutics Program 2014 [consulta el 28 de noviembre de 2014]. Disponible en: http://dtp.nci.nih.gov/dtpstandard/servlet/dwindex?searchtype=NSC&chemnameboolean=and&outputformat=html&searchlist=295156&Submit=Submit:

NCI. Developmental Therapeutics Program 2014 [consulta el 29 de noviembre de 2014]. Disponible en: http://dtp.nci.nih.gov/tpstandard/servlet/dwindex?searchtype=NSC&chemnameboolean=and&outputformat=html&searchlist=698249&Submit=Submit:

Nagaraju GP, Zhu S, Ko JE, Ashritha N, Kandimalla R, Snyder JP, et al. Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer. Cancer Lett. 2015;357(2):557-65.

https://doi.org/10.1016/j.canlet.2014.12.007

Ferreira AK, de-Sá-Júnior PL, Pasqualoto KFM, de Azevedo RA, Câmara DAD, Costa AS, et al. Cytotoxic effects of dillapiole on MDA-MB-231 cells involve the induction of apoptosis through the mitochondrial pathway by inducing an oxidative stress while altering the cytoskeleton network. Biochimie. 2014;99(0):195-207.

https://doi.org/10.1016/j.biochi.2013.12.008

Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, et al. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015;357(1):129-40.

https://doi.org/10.1016/j.canlet.2014.11.017

Bezerra DP, Pessoa C, de Moraes MO, Saker-Neto N, Silveira ER, Costa-Lotufo LV. Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci. 2013;48(3): 453-63.

https://doi.org/10.1016/j.ejps.2012.12.003

Li S, Lei Y, Jia Y, Li N, Wink M, Ma Y. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine. 2011;19(1):83-7.

https://doi.org/10.1016/j.phymed.2011.06.031

Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature. 2011;475(7355):231-4.

https://doi.org/10.1038/nature10167

Rao CV, Kurkjian CD, Yamada HY. Mitosis-targeting natural products for cancer prevention and therapy. Curr Drug Targets. 2012;13(14):1820-30.

https://doi.org/10.2174/138945012804545533

Pommier Y, Leo E, Zhang H, Marchand C. DNA Topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17(5):421-33.

https://doi.org/10.1016/j.chembiol.2010.04.012

Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev. 2012;112(7):3611-40.

https://doi.org/10.1021/cr200325f

Negi AS, Gautam Y, Alam S, Chanda D, Luqman S, Sarkar J, et al. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Bioorg Med Chem. 2015;23(3):373-89.

https://doi.org/10.1016/j.bmc.2014.12.027

Chaplin DJ, Hill SA. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys. 2002;54(5):1491-6.

https://doi.org/10.1016/S0360-3016(02)03924-X

Patterson DM, Rustin GJ. Vascular damaging agents. Clin Oncol. 2007;19(6):443-56.

https://doi.org/10.1016/j.clon.2007.03.014

Lippert JW 3rd. Vascular disrupting agents. Bioorg Med Chem. 2007;15(2):605-15.

https://doi.org/10.1016/j.bmc.2006.10.020

Yang T, Wang Y, Li Z, Dai W, Yin J, Liang L, et al. Targeted delivery of a combination therapy consisting of combretastatin A4 and low-dose doxorubicin against tumor neovasculature. Nanomedicine: Nanomedicine. 2012;8(1):81-92.

https://doi.org/10.1016/j.nano.2011.05.003

Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor- Vascular Disrupting Agents. Cancer Treat Rev. 2011;37(1):63-74.

https://doi.org/10.1016/j.ctrv.2010.05.001

Hinnen P, Eskens FALM. Vascular disrupting agents in clinical development. Br J Cancer. 2007;96(8):1159-65.

https://doi.org/10.1038/sj.bjc.6603694

Wu XY, Ma W, Gurung K, Guo CH. Mechanisms of tumor resistance to small-molecule vascular disrupting agents: treatment and rationale of combination therapy. J Formos Med Assoc. 2013;112(3):115-24.

https://doi.org/10.1016/j.jfma.2012.09.017

Patil SA, Patil R, Pfeffer LM, Miller DD. Chromenes: potential new chemotherapeutic agents for cancer. Future Med Chem. 2013;5(14):1647-60.

https://doi.org/10.4155/fmc.13.126

Mooney CJ, Nagaiah G, Fu P, Wasman JK, Cooney MM, Savvides PS, et al. A phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid. 2009;19(3):233-40.

https://doi.org/10.1089/thy.2008.0321

Oxigene. http://www.oxigene.com: Oxigene; 2014 [consulta el 4 de junio de 2015]. Disponible en: http://www.oxigene.com/product-development

Fulda S. Inhibitor of Apoptosis (IAP) proteins as therapeutic targets for radiosensitization of human cancers. Cancer Treat Rev. 2012;38(6):760-6.

https://doi.org/10.1016/j.ctrv.2012.01.005

Dai Y, Desano J, Qu Y, Tang W, Meng Y, Lawrence TS, et al. Natural IAP inhibitor Embelin enhances therapeutic efficacy of ionizing radiation in prostate cancer. Am J Cancer Res. 2011;1(2):128-43.

Cheng YJ, Jiang HS, Hsu SL, Lin LC, Wu CL, Ghanta VK, et al. XIAP-mediated protection of H460 lung cancer cells against cisplatin. Eur J Pharmacol. 2010;627(1-3):75-84.

https://doi.org/10.1016/j.ejphar.2009.11.003

Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Dis. 2006;5(3):219-34.

https://doi.org/10.1038/nrd1984

Dynek JN, Vucic D. Antagonists of IAP proteins as cancer therapeutics. Cancer Lett. 2013;332(2):206-14.

https://doi.org/10.1016/j.canlet.2010.06.013

Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol. 2014;35(12):631-40.

https://doi.org/10.1016/j.it.2014.10.004

Rojas M, Salmen S, Berrueta L. Muerte celular programada: I. Activación y mecanismos de regulación. Revista Médica de la Extensión Portuguesa. 2009;4(3):92-106.

Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol. 2015;94(1):1-11.

https://doi.org/10.1016/j.bcp.2014.12.018

Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798-811.

https://doi.org/10.1038/sj.onc.1209608

Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277-88.

https://doi.org/10.1038/nrc776

LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene. 2008;27(48):6252-75.

https://doi.org/10.1038/onc.2008.302

Mannhold R, Fulda S, Carosati E. IAP antagonists: promising candidates for cancer therapy. Drug Discov Today. 2010;15(5-6):210-9.

https://doi.org/10.1016/j.drudis.2010.01.003

Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11(4):331.

https://doi.org/10.1038/nrd3698

Lukacs C, Belunis C, Crowther R, Danho W, Gao L, Goggin B, et al. The structure of XIAP BIR2: understanding the selectivity of the BIR domains. Acta Crystallogr Section D Biol Crystallogr. 2013;69 Pt 9:1717-25.

https://doi.org/10.1107/S0907444913016284

Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature. 2000;408(6815):1008-12.

https://doi.org/10.1038/35050012

Shi Y. A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ. 2002;9(2), 93-35.

https://doi.org/10.1038/sj.cdd.4400957

Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897-907.

https://doi.org/10.1038/nrm1496

Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;12(9):1543-68.

https://doi.org/10.1007/s10495-007-0087-3

Elsawy MA, Martin L, Tikhonova IG, Walker B. Solid phase synthesis of Smac/DIABLO-derived peptides using a 'Safety-Catch' resin: Identification of potent XIAP BIR3 antagonists. Bioorg Med Chem. 2013;21(17):5004-11.

https://doi.org/10.1016/j.bmc.2013.06.055

Fulda S. Smac mimetics as IAP antagonists. Semin Cell Dev Biol. 2015;39:132-8.

https://doi.org/10.1016/j.semcdb.2014.12.005

Kim KS, Zhang L, Williams D, Perez HL, Stang E, Borzilleri RM, et al. Discovery of tetrahydroisoquinoline-based bivalent heterodimeric IAP antagonists. Bioorg Med Chem Lett. 2014;24(21):5022-9.

https://doi.org/10.1016/j.bmcl.2014.09.022

Sun H, Nikolovska-Coleska Z, Yang C-Y, Qian D, Lu J, Qiu S, et al. Design of small-molecule peptidic and non-peptidic smac mimetics. Acc Chem Res. 2008;41(10):1264-77.

https://doi.org/10.1021/ar8000553

Chessari G, Buck IM, Day JE, Day PJ, Iqbal A, Johnson CN, et al. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP. J Med Chem. 2015;58(16): 6574-88.

https://doi.org/10.1021/acs.jmedchem.5b00706

Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem. 2004;47(10):2430-40.

https://doi.org/10.1021/jm030420+

Chen J, Nikolovska-Coleska Z, Wang G, Qiu S, Wang S. Design, synthesis, and characterization of new embelin derivatives as potent inhibitors of X-linked inhibitor of apoptosis protein. Bioorg Med Chem Lett. 2006;16(22):5805-8.

https://doi.org/10.1016/j.bmcl.2006.08.072

Poojari R. Embelin - a drug of antiquity: shifting the paradigm towards modern medicine. Expert Opinion on Investigational Drugs. 2014;23(3):427-44.

https://doi.org/10.1517/13543784.2014.867016

Singh B, Guru SK, Sharma R, Bharate SS, Khan IA, Bhushan S, et al. Synthesis and anti-proliferative activities of new derivatives of embelin. Bioorg Med Chem Lett. 2014;24(20):4865-70.

https://doi.org/10.1016/j.bmcl.2014.08.052

Cragg GM, Grothaus PG, Newman DJ. New Horizons for old drugs and drug leads. J Nat Prod. 2014;77(3):703-23.

https://doi.org/10.1021/np5000796

Hong Y, Sengupta S, Hur W, Sim T. Identification of novel ROS inducers: quinone derivatives tethered to long hydrocarbon chains. J Med Chem. 2015;58(9):3739-50.

https://doi.org/10.1021/jm501846y

Cómo citar

[1]
Muñoz Cendales, D.R. y Cuca Suárez, L.E. 2016. Compuestos citotóxicos de origen vegetal y su relación con proteínas inhibidoras de apoptosis (IAP). Revista Colombiana de Cancerología. 20, 3 (sep. 2016), 124–134.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

01-09-2016

Número

Sección

Artículos de revisión