Análisis de metilación en los genes supresores de tumores CDKN2B y DBC1 en pacientes colombianos con diagnóstico de leucemia

  • Laura María Medina Gómez Universidad de Antioquia
  • Gonzalo Vásquez Palacio Universidad de Antioquia
  • Carlos Mario Muñetón Peña Universidad de Antioquia
Palabras clave: Metilación del ADN, Leucemias, LLA, LMA, LMC, Epigenética, Genes supresores de tumores

Resumen

Objetivo: Analizar la metilación en los promotores de los genes CDKN2B y DBC1 en muestras de pacientes con leucemia linfoblástica aguda (LLA), leucemia mieloblástica aguda (LMA) y leucemia mieloide crónica (LMC). Además, correlacionar el perfil de metilación de los pacientes con los hallazgos citogenéticos.
Materiales y métodos: Se evaluaron 56 pacientes con leucemias: 24 con LLA, 16 con LMA y 16 con LMC. El ADN extraído se modificó con bisulfito de sodio. Se realizó un análisis de metilación en los genes CDKN2B y DBC1 mediante la PCR específica de metilación (MS-PCR). Las muestras positivas por la técnica MS-PCR fueron secuenciadas.
Resultados: Se encontró una frecuencia total de metilación del 87,5%. El gen CDKN2B se encontró metilado en el 75% de LLA y de LMC, y del 62% en LMA. El gen DBC1 se encontró metilado en el 96% de LLA, el 94% de LMA y del 68,8% en LMC. El gen más frecuentemente metilado en todas las muestras fue DBC1. De los tres tipos de leucemias, la LLA fue la que presentó los mayores porcentajes de metilación. El 62,5% de la muestras tenían metilado ambos genes. Las muestras con cariotipo normal presentaron una alta frecuencia de metilación de CDKN2B y DBC1.
Conclusiones: En este estudio se demostró, por primera vez en pacientes colombianos con leucemias, que la metilación de los genes CDKN2B y DBC1 es un evento frecuente. Los hallazgos indican que la metilación de genes supresores de tumores es una vía molecular alterna que podría estar relacionada con el desarrollo de neoplasias hematológicas.

Biografía del autor/a

Laura María Medina Gómez, Universidad de Antioquia

Unidad de Genética Médica, Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia

Gonzalo Vásquez Palacio, Universidad de Antioquia

Unidad de Genética Médica, Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia

Carlos Mario Muñetón Peña, Universidad de Antioquia

Unidad de Genética Médica, Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia

Referencias

Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4 th Edition. Lyon: IARC;2008.

Rowley JD. Chromosomal translocations: revisited yet again. Blood. 2008;112:2183-9.

https://doi.org/10.1182/blood-2008-04-097931

Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol. 2003;109:80-8.

https://doi.org/10.1016/S1521-6616(03)00208-0

Fröhling S, Döhner H. Chromosomal abnormalities in cancer. N Engl J Med. 2008;359:722-34.

https://doi.org/10.1056/NEJMra0803109

Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148-59.

https://doi.org/10.1056/NEJMra072067

Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484-92.

https://doi.org/10.1038/nrg3230

Baylin SB, Jones PA. A decade of exploring the cancer epigenome- biological and translational implications. Nat Rev Cancer. 2011;11:726-34.

https://doi.org/10.1038/nrc3130

Florean C, Schnekenburger M, Grandjenette C, Dicato M, Diederich M. Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics. 2011;3:581-609.

https://doi.org/10.2217/epi.11.73

Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042-54.

https://doi.org/10.1056/NEJMra023075

Álvarez S, Suela J, Valencia A, Fernández A, Wunderlich M, Agirre X, et al. DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS One. 2010;5:e12197.

https://doi.org/10.1371/journal.pone.0012197

San José-Enériz E, Agirre X, Román-Gómez J, Cordeu L, Garate L, Jiménez-Velasco A, et al. Downregulation of DBC1 expression in acute lymphoblastic leukaemia is mediated by aberrant methylation of its promoter. Br J Haematol. 2006;134:137-44.

https://doi.org/10.1111/j.1365-2141.2006.06131.x

Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525-30.

Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F, et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood. 1998;91:2985-90.

https://doi.org/10.1182/blood.V91.8.2985.2985_2985_2990

Grønbaek K, Ralfkiaer U, Dahl C, Hother C, Burns JS, Kassem M, et al. Frequent hypermethylation of DBC1 in malignant lymphoproliferative neoplasms. Mod Pathol. 2008;21:632-8.

https://doi.org/10.1038/modpathol.2008.27

Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S, et al. A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One. 2009;4:e6986.

https://doi.org/10.1371/journal.pone.0006986

Queirós AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M, Navarro A, et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia. 2015;29:598-605.

https://doi.org/10.1038/leu.2014.252

Nordlund J, Bäcklin CL, Zachariadis V, Cavelier L, Dahlberg J, Öfverholm I, et al. DNA methylation based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics. 2015;7:11-23.

https://doi.org/10.1186/s13148-014-0039-z

Jelinek J, Gharibyan V, Estecio MR, Kondo K, He R, Chung W, et al. Aberrant DNA methylation is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. PLoS One. 2011;6:e22110.

https://doi.org/10.1371/journal.pone.0022110

Momparler RL, Côté S, Momparler LF, Idaghdour Y. Epigenetic therapy of Acute myeloid leukemia using 5-aza-2'deoxycytidine (decitabine) in combination with inhibitors of histonemethylation and deacetylation. Clin Epigenetics. 2014;6:19.

https://doi.org/10.1186/1868-7083-6-19

Chim CS, Tam CY, Liang R, Kwong YL. Methylation of p15 and p16 genes in adult acute leukemia: lack of prognostic significance. Cancer. 2001;91:2222-9.

https://doi.org/10.1002/1097-0142(20010615)91:12<2222::AID-CNCR1252>3.0.CO;2-R

Kim M, Yim SH, Cho NS, Kang SH, Ko DH, Oh B, et al. Homozygous deletion of CDKN2A (p16, p14) and CDKN2B (p15) genes is a poor prognostic factor in adult but not in childhood B-lineage acute lymphoblastic leukemia: a comparative deletion and hypermethylation study. Cancer Genet Cytogenet. 2009;195:59-65.

https://doi.org/10.1016/j.cancergencyto.2009.06.013

Habuchi T, Luscombe M, Elder PA, Knowles MA. Structure and methylation-based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor suppressor region at 9q32-q33. Genomics. 1998;48:277-88.

https://doi.org/10.1006/geno.1997.5165

Izumi H, Inoue J, Yokoi S, Hosoda H, Shibata T, Sunamori M, et al. Frequent silencing of DBC1 is by genetic or epigenetic mechanisms in non-small cell lung cancers. Hum Mol Genet. 2005;14:997-1007.

https://doi.org/10.1093/hmg/ddi092

Gao S, Worm J, Guldberg P, Eiberg H, Krogdahl A, Sorensen JA, et al. Loss of heterozygosity at 9q33 and hypermethylation of the DBCCR1 gene in oral squamous cell carcinoma. Br J Cancer. 2004;91:760-4.

https://doi.org/10.1038/sj.bjc.6601980

Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, Aguirre X, Barrios M, Navarro G, et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood. 2004;104:2492-8.

https://doi.org/10.1182/blood-2004-03-0954

Wong IH, Ng MH, Huang DP, Lee JC. Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood. 2000;95:1942-9.

https://doi.org/10.1182/blood.V95.6.1942

Grossmann V, Haferlach C, Weissmann S, Roller A, Schindela S, Poetzinger F, et al. The molecular profile of adult T-cell acute lymphoblastic leukemia: Mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer. 2013;52:410-22.

https://doi.org/10.1002/gcc.22039

Ekmekci CG, Gutiérrez MI, Siraj AK, Ozbek U, Bhatia K. Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am J Hematol. 2004;77:233-40.

https://doi.org/10.1002/ajh.20186

Griffiths EA, Gore SD, Hooker CM, Mohammad HP, McDevitt MA, Smith BD, et al. Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics. 2010;5:590-600.

https://doi.org/10.4161/epi.5.7.12558

Santos P, Andreoti G, Góes A, Zagom A, Araujo W. DNA methylation analysis of the tumor suppressor gene CDKN2B in Brazilian leukemia patients. Genet Mol Biol. 2008;31:632-8.

https://doi.org/10.1590/S1415-47572008000400005

Reyes S, Brebi P, Ili CG, Mu˜noz S, Melo A, Guerrero R. Perfil de Metilación de Genes Supresores de Tumores como Factor Pronóstico en Pacientes con Leucemia Mieloide Aguda. Inter J Morphol. 2011;29:151-7.

https://doi.org/10.4067/S0717-95022011000100026

Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290-3.

https://doi.org/10.1038/243290a0

Nguyen TT, Mohrbacher AF, Tsai YC, Groffen J, Heisterkamp N, Nichols PW, et al. Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood. 2000;95:2990-2.

https://doi.org/10.1182/blood.V95.9.2990.009k08_2990_2992

Janssen JJ, Denkers F, Valk P, Cornelissen JJ, Schuurhuis GJ, Ossenkoppele GJ. Methylation patterns in CD34 positive chronic myeloid leukemia blast crisis cells. Haematologica. 2010;95:1036-7.

https://doi.org/10.3324/haematol.2009.015693

Uehara E, Takeuchi S, Yang Y, Fukumoto T, Matsuhashi Y, Tamura T, et al. Aberrant methylation in promoter-associated CpG islands of multiple genes in chronic myelogenous leukemia blast crisis. Oncol Lett. 2012;3:190-2.

https://doi.org/10.3892/ol.2011.419

Kusy S, Cividin M, Sorel N, Brizard F, Guilhot F, Brizard A, et al. p14ARF, p15INK4b, and p16INK4 a methylation status in chronic myelogenous leukemia. Blood. 2003;101:374-5.

https://doi.org/10.1182/blood-2002-09-2834

Ogawa M, Sakashita K, Zhao XY, Hayakawa A, Kubota T, Koike K. Analysis of histone modification around the CpG island region of the p15 gene in acute myeloblastic leukemia. Leuk Res. 2007;31:611-21.

https://doi.org/10.1016/j.leukres.2006.09.023

Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17:13-27.

https://doi.org/10.1016/j.ccr.2009.11.020

Garcia-Manero G, Daniel J, Smith TL, Kornblau SM, Lee MS, Kantarjian HM, et al. DNA methylation of multiple promoterassociated CpG islands in adult acute lymphocytic leukemia. Clin Cancer Res. 2002;8:2217-24.

Kroeger H, Jelinek J, Estécio MR, He R, Kondo K, Chung W, et al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood. 2008;112:1366-73.

https://doi.org/10.1182/blood-2007-11-126227

Jiang D, Hong Q, Shen Y, Xu Y, Zhu H, Li Y, Xu C, Ouyang G, Duan S. The diagnostic value of DNA methylation in leukemia: a systematic review and meta- analysis. PLoS One. 2014;9:e96822.

https://doi.org/10.1371/journal.pone.0096822

Nishiyama H, Gill JH, Pitt E, Kennedy W, Knowles MA. Negative regulation of G(1)/S transition by the candidate bladder tumour suppressor gene DBCCR1. Oncogene. 2001;20:2956-64.

https://doi.org/10.1038/sj.onc.1204432

Rosu-Myles M, Wolff L. p15Ink4b: dual function in myelopoiesis and inactivation in myeloid disease. Blood Cells Mol Dis. 2008;40:406-9.

https://doi.org/10.1016/j.bcmd.2007.09.005

Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013, 30;368(22):2059-74.

https://doi.org/10.1056/NEJMoa1301689

Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, et al. Combined epigenetic therapy with histone methyltransferase EZH2 inhibitor 3 deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood. 2009;114:2733-43.

https://doi.org/10.1182/blood-2009-03-213496

Abáigar M, Ramos F, Benito R, Díez-Campelo M, Sánchez-del- Real J, Hermosín L, et al. Prognostic impact of the number of methylated genes in myelodysplastic syndromes and acute myeloid leukemias treated with azacytidine. Ann Hematol. 2013;92:1543-52.

https://doi.org/10.1007/s00277-013-1799-9

Carvajal L, Soto ID, Pineda N, Ortiz D, Duque C, Ospina J, et al. Strong Amerind/White Sex Bias and a Possible Sephardic Contribution among the Founders of a Population in Nortwest Colombia. Am J Hum Genet. 2000;67:1287-95.

https://doi.org/10.1086/321216

Publicado
2016-12-01
Sección
Artículos de investigación/originales