La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia

Autores/as

  • María José Gacha Garay Universidad de los Andes
  • Verónica Akle Universidad de los Andes
  • Leonardo Enciso Instituto Nacional de Cancerología
  • Zayra Viviana Garavito Aguilar Universidad de los Andes

Palabras clave:

Leucemia linfoblástica aguda, Pez cebra, Biomodelos

Resumen

El pez cebra es un modelo establecido para el estudio del desarrollo en vertebrados y es especialmente útil para la investigación del proceso de hematopoyesis y las enfermedades asociadas a esta. Los linajes principales, los genes y los procesos de desarrollo con los seres humanos son conservados. En los últimos años, el pez cebra se ha utilizado cada vez más como un modelo para estudiar enfermedades hematopoyéticas humanas, incluyendo la leucemia linfoblástica aguda. Esta revisión evidencia la importancia del estudio de esta enfermedad en Colombia debido a las diferencias de la etiología que presenta este tipo de leucemia en comparación con otros países. Además, describe la aplicación del pez cebra como una herramienta alternativa para investigaciones preclínicas de la leucemia linfoblástica aguda. Este modelo es asequible, facilita la experimentación, su manipulación es relativamente simple y tiene gran versatilidad para estudios moleculares y genéticos del cáncer y está disponible en Colombia.

Biografía del autor/a

María José Gacha Garay, Universidad de los Andes

Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá D. C., Colombia

Verónica Akle, Universidad de los Andes

Laboratorio de Neurociencia y Ritmos Circadianos, Facultad de Medicina, Universidad de los Andes, Bogotá D. C., Colombia

Leonardo Enciso, Instituto Nacional de Cancerología

Departamento Hematología, Instituto Nacional de Cancerología, Bogotá D. C., Colombia

Zayra Viviana Garavito Aguilar, Universidad de los Andes

Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá D. C., Colombia

Referencias bibliográficas

Castro MA, Orozco LC, Rueda E, Suárez A. Epidemiología de la leucemia linfoblástica aguda en pediatría: incidencia, mortalidad y asociaciones casuales. Salud UIS. 2007;39:116-23.

Labardini JR, Cervera E, López O, Corrales C, Balbuena M, Barbosa A, et al. Oncoguía Leucemia Linfoblástica Aguda. Cancerología. 2011:111-5.

SEER. Cancer Statistics Factsheets: Leukemia. National Cancer Institute. [Internet] Bethesda, MD Disponible en: http://seer.cancer.gov/statfacts/html/leuks.html

Katz AJ, Chia VM, Schoonen WM, Kelsh MA. Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes Control. 2015;26: 1627-42.

https://doi.org/10.1007/s10552-015-0657-6

Leukemia Pokharel M. A Review Article. IJARPB. 2012;2:397-407.

Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer; 2013.

Schiffer CA. Perspective on the Treatment of Acute Lymphoblastic Leukemia in Adults. En: Advani A, Lazarus H, editores. Adult Acute Lymphocitic Leukemia. New York: Humana Press; 2011. p. 1-8.

https://doi.org/10.1007/978-1-60761-707-5_1

Rendón Macías ME, Reyes Zepeda NC, Villasís Keever MÁ, Meneses JS, Nú˜nez AE. Tendencia mundial de la supervivencia en pacientes pediátricos con leucemia linfoblástica aguda. Revisión de las últimas cuatro décadas. Bol Med Hosp Infant Mex. 2012;69:153-63.

Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. JCO. 2011;29:532-43.

https://doi.org/10.1200/JCO.2010.30.1382

Pardo C, Otero J, Trejo R. Protocolo de vigilancia en salud pública de las leucemias agudas pediátricas. Rev Colomb Cancerol. 2008;11:219-27.

Brüggemann M, Raff T, Flohr T, Gökbuget N, Nakao M, Droese J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107:1116-23.

https://doi.org/10.1182/blood-2005-07-2708

Piñeros M, Ramos CP, Garay ÓG, Suárez GH. Atlas de mortalidad por cáncer en Colombia. Bogotá, Colombia: Imprenta Nacional de Colombia; 2010.

Enciso L, Rodríguez M, García S, Rosales J, Enrique J, Combariza F, et al. Consenso colombiano sobre el tratamiento de la leucemia linfoblástica aguda en adultos. Rev Colomb Cancerol. 2006;10:7-35.

Piñeros M, Gamboa O, Suárez A. Mortalidad por cáncer infantil en Colombia durante 1985 a 2008. Rev Panam Salud Pública. 2011;30:15-21.

Combariza F, Casas CP, Rodríguez M, Cardona AF, Ospina E, Grajales M. Supervivencia en adultos con leucemia linfoide aguda de novo tratados con el esquema HyperCVAD en el Instituto Nacional de Cancerología (Colombia), entre enero de 2001 y junio de 2005. Rev Colomb Cancerol. 2007;11:92-100.

Figueroa Camacho JL, Solano MH, Villamizar Goméz L. Leucemia Linfoide Aguda. Repert Med Cir. 2010;19:174-86.

Cruz Rodríguez N, Combita AL, Enciso LJ, Quijano SM, Pinzon PL, Lozano OC, et al. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-acute lymphoblastic leukemia. J Exp Clin Cancer Res. 2016;35:1-14.

https://doi.org/10.1186/s13046-016-0333-z

Registro Poblacional de Cáncer de Cali, Colombia. Leucemias. Universidad del Valle, 2008:7-9 [Internet]. Cali, Colombia; 2008. Disponible en: http://rpcc.univalle.edu.co/es/index.php

Brome M, Galeano L, Santamaría I, Salas C, Álvarez A. Informe de frecuencias de cáncer departamento de Antioquia. Rev Epidemiol Antioquia. 2009;28:7-27.

Ramos Peñafiel CO, Cabrera García Á, Rozen Fuller E, González León G, Balderas C, Kassack Ipi˜na JJ, et al. Comparación del HYPER-CVAD con un régimen institucional en el tratamiento de la leucemia linfobástica aguda del adulto en un hospital de México. Rev Peru Med Exp Salud Publica. 2014;31:6-8.

https://doi.org/10.17843/rpmesp.2014.313.91

Arias O, Nelson E. Registros poblacionales de cáncer: avances en Colombia, Chile y Brasil. Rev Fac Nac Salud Pública. 2013;31:127-35.

Acevedo AM, Gómez A, Becerra HA, Ríos AP, Zambrano PC, Obando EP, et al. Distribution and trends of hematology and oncology research in Latin America: A decade of uncertainty. Cancer. 2014;120:1237-45.

https://doi.org/10.1002/cncr.28539

Barreto SM, Miranda JJ, Figueroa JP, Schmidt MI, Munoz S, Kuri Morales PP, et al. Epidemiology in Latin America and the Caribbean: current situation and challenges. Int J Epidemiol. 2012;41:557-71.

https://doi.org/10.1093/ije/dys017

PILAC. Guía de diagnóstico y tratamiento de Leucemia Linfoblastica Aguda en adultos [Internet] Disponible en: http://www.guiasleucemiaylinfomacolombia.leonardoenciso.com

Carreño Dueñas A, Rojas MP, Lucio Arias D, Serrano ML, Pi˜neros M. Investigación en cáncer en Colombia, 2000-2010. Rev Colomb Cancerol. 2015;19.

https://doi.org/10.1016/j.rccan.2014.07.004

Carrascal E, Cortés A, Akiba S, Tamayo O, Qui˜nónez F, Flórez L, et al. Epidemiología y patología de la leucemia/linfoma de celulas T del adulto en Cali y el Suroccidente colombiano. Colomb Med. 2004;35:12-7.

Duque Sierra L, Restrepo Perdomo C, Zapata Cárdenas A, Duque Ortega J, Donado Gómez J, Mejía G, et al. Características morfológicas, citogenéticas e inmunofenotipicas de pacientes con leucemia mieloide aguda. Medellín, Colombia. CIMEL. 2006;11:72-7.

Castro Á. Evaluación del evento traslado durante el tratamiento para leucemia linfoblástica aguda en ni˜nos en un centro de referencia de oncología pediátrica en Bogotá. Universidad Nacional de Colombia; 2012.

Vera AM, Pardo C, Duarte MC, Suárez A. Análisis de la mortalidad por leucemia aguda pediátrica en el Instituto Nacional de Cancerología. Biomédica. 2012;32:355-64.

https://doi.org/10.7705/biomedica.v32i3.691

Murillo Moreno R, Piñeros M, Wiesner C, Rivera D, Bernal L, Aguilera J, et al. Plan decenal para el control del cáncer en Colombia, 2012-2021. Bogota, D. C.: Ministerio de salud y protección social; 2012.

Gacha Garay MJ, Garavito Aguilar Z. Evaluation of xenografted leukemic lymphoblastoid T cells, Jurkat, into zebrafish as a preclinical study of acute lymphoblastic leukemia. Bogotá D. C.: Universidad de los Andes; 2015.

Pollyea D, Kohr H, Yang J, Chang E, Lin S, Clarke C. Acute Leukemia in Adult Hispanic Americans: Differences in Incidence Rates by Nativity. J Cancer Prev Curr Res. 2014;1:9870-4.

https://doi.org/10.15406/jcpcr.2014.01.00005

Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, et al. Pre-B cell proliferation and lymphoblastic leukemia high-grade/lymphoma in E(-miR155 transgenic mice. PNAS. 2006;103:7024-9.

https://doi.org/10.1073/pnas.0602266103

Nishida H, Yamazaki H, Yamada T, Iwata S, Dang NH, Inukai T, et al. CD9 correlates with cancer stem cell potentials in human B-acute lymphoblastic leukemia cells. Biochem Biophys Res Commun. 2009;382:57-62.

https://doi.org/10.1016/j.bbrc.2009.02.123

Smith ACH, Raimondi AR, Salthouse CD, Ignatius MS, Blackburn JS, Mizgirev IV, et al. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood. 2010;115:3296-303.

https://doi.org/10.1182/blood-2009-10-246488

Yamazaki H, Nishida H, Iwata S, Dang NH, Morimoto C. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells. Biochem Biophys Res Commun. 2009;383:172-7.

https://doi.org/10.1016/j.bbrc.2009.03.127

Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157-63.

https://doi.org/10.1038/nature10725

Wang Z, Xu F, Yuan N, Niu Y, Lin W, Cao Y, et al. Rapamycin inhibits pre-B acute lymphoblastic leukemia cells by downregulating DNA and RNA polymerases. Leuk Res. 2014;38:940-7.

https://doi.org/10.1016/j.leukres.2014.05.009

Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. JCO. 2012;30:1663-9.

https://doi.org/10.1200/JCO.2011.37.8018

Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75-87.

https://doi.org/10.1016/S1535-6108(02)00018-1

Hlobeˇnová T, Sefc L, Chang KT, Savvulidi F, Michalová J, Neˇcas E. B- lymphopoiesis gains sensitivity to subsequent inhibition by estrogens during final phase of fetal development. Dev Comp Immunol. 2012;36:385-9.

https://doi.org/10.1016/j.dci.2011.07.009

Harder L, Eschenburg G, Zech A, Kriebitzsch N, Otto B, Streichert T, et al. Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia. JEM. 2013;210:2289-304.

https://doi.org/10.1084/jem.20130497

Kato I, Niwa A, Heike T, Fujino H, Saito MK, Umeda K, et al. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis. PLoS One. 2011;6.

https://doi.org/10.1371/journal.pone.0027042

Kantarjian H, Thomas D, O'Brien S, Cortes J, Giles F, Jeha S, et al. Long- term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acut lymphocytic leukemia. Cancer. 2004;101:2788-801.

https://doi.org/10.1002/cncr.20668

Harrison N, Laroche F, Gutierrez A, Feng H. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights. En: Langenau DM, editor. Cancer and Zebrafish Mechanisms, Techniques and Models. Springer International Publishing; 2016. p. 411-37.

https://doi.org/10.1007/978-3-319-30654-4_15

Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn. 2005;233:1560-70.

https://doi.org/10.1002/dvdy.20471

Barabé F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316:600-4.

https://doi.org/10.1126/science.1139851

Ma D, Zhang J, Lin H, Italiano J, Handin RI. The identification and characterization of zebrafish hematopoietic stem cells. Blood. 2011;118:289-97.

https://doi.org/10.1182/blood-2010-12-327403

Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, et al. Interleukin-receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med. 2014;211:701-13.

https://doi.org/10.1084/jem.20122727

Martelli AM, Lonetti A, Buontempo F, Ricci F, Tazzari PL, Evangelisti C, et al. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells. Adv Biol Regul. 2014;56:6-21.

https://doi.org/10.1016/j.jbior.2014.04.004

Fragoso R, Barata J. PTEN and leukemia stem cells. Adv Biol Regul. 2014;56:22-9.

https://doi.org/10.1016/j.jbior.2014.05.005

Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJT. Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia. 2012;26:414-21.

https://doi.org/10.1038/leu.2011.387

Ishino R, Minami K, Tanaka S, Nagai M, Matsui K, Hasegawa N, et al. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro. Biochem Biophys Res Commun. 2013;440:125-31.

https://doi.org/10.1016/j.bbrc.2013.09.044

Buitenkamp TD, Izraeli S, Zimmermann M, Forestier E, Heerema NA, van den Heuvel-Eibrink MM, et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood. 2014;123:70-7.

https://doi.org/10.1182/blood-2013-06-509463

Svojgr K, Burjanivova T, Vaskova M, Kalina T, Stary J, Trka J, et al. Adaptor molecules expression in normal lymphopoiesis and in childhood leukemia. Immunol Lett. 2009;122:185-92.

https://doi.org/10.1016/j.imlet.2008.12.008

Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, te Kronnie G, Cario G, et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia. 2012;90:2-9.

https://doi.org/10.1038/leu.2011.302

Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381:1943-55.

https://doi.org/10.1016/S0140-6736(12)62187-4

Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2012;38:9-96.

https://doi.org/10.1182/asheducation.V2012.1.389.3798360

Bassan R, Gatta G, Tondini C, Willemze R. Adult acute lymphoblastic leukaemia. Crit Rev Oncol Hematol. 2004;50:223-61.

https://doi.org/10.1016/j.critrevonc.2003.11.003

Yang JJ, Cheng C, Devidas M, Cao X, Fan Y, Campana D, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet. 2011;43:237-41.

https://doi.org/10.1038/ng.763

Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030-43.

https://doi.org/10.1016/S0140-6736(08)60457-2

Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J. 2006;354:166-78.

https://doi.org/10.1056/NEJMra052603

Medina Medina EA. Determinación de perfiles inmunofenotípicos por citometría de flujo de leucemia linfoblástica aguda en niños y su valor en la detección de enfermedad mínima residual. Bogotá D. C: Universidad Nacional de Colombia; 2010.

Park JH, Qiao B, Panageas KS, Schymura MJ, Jurcic JG, Rosenblat TL, et al. Early death rate in acute promyelocytic leukemia remains high despite all- trans retinoic acid. Blood. 2011;118:1248-55.

https://doi.org/10.1182/blood-2011-04-346437

Wertman J, Veinotte C, Dellaire G, Berman J. The Zebrafish Xenograft Platform: evolution of a Novel Cancer Model and Preclinical Screening Tool. En: Langenau DM, editor. Cancer and Zebrafish Mechanisms, Techniques and Models. Springer International Publishing; 2016. p. 411-37.

https://doi.org/10.1007/978-3-319-30654-4_13

Goldstone AH, Richards SM, Lazarus HM, Tallman MS, Buck G, Fielding AK, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidatio. Blood. 2008;111:1827-34.

https://doi.org/10.1182/blood-2007-10-116582

Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105:452-8.

https://doi.org/10.1093/jnci/djt007

Kaur G, Dufour JM. Cell lines: Valuable tools or useless artifacts. Spermatogenesis. 2012;2:1-5.

https://doi.org/10.4161/spmg.19885

Nicoli S, Ribatti D, Cotelli F, Presta M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 2007;67:2927-31.

https://doi.org/10.1158/0008-5472.CAN-06-4268

Cook GJ, Pardee TS. Animal models of leukemia: Any closer to the real thing? Cancer Metastasis Rev. 2013;32:63-76.

https://doi.org/10.1007/s10555-012-9405-5

Wartha K, Herting F, Hasmann M. Fit-for purpose use of mouse models to improve predictivity of cancer therapeutics evaluation. Pharmacol Ther. 2014;142:351-61.

https://doi.org/10.1016/j.pharmthera.2014.01.001

Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007;8:1006-16.

https://doi.org/10.1038/nrm2277

Cheung AM, Fung TK, Fan AK, Wan TS, Chow HC, Leung JC, et al. Successful engraftment by leukemia initiating cells in adult acute lymphoblastic leukemia after direct intrahepatic injection into unconditioned newborn NOD/SCID mice. Exp Hematol. 2010;38:3-10.

https://doi.org/10.1016/j.exphem.2009.10.007

Binder V, Zon LI. High throughput in vivo phenotyping: The zebrafish as tool for drug discovery for hematopoietic stem cells and cancer. Drug Discov Today Dis Model. 2013;10:e17-22.

https://doi.org/10.1016/j.ddmod.2012.02.007

Ito K, Bernardi R, Morotti A, Matsuoka S, Ikeda Y, Rosenblatt J, et al. PML targeting eradicates quiescent leukaemia-initianig cells. Nature. 2008;453:1072-8.

https://doi.org/10.1038/nature07016

Sano D, Myers JN. Xenograft models of head and neck cancers. Head Neck Oncol. 2009;1:32.

https://doi.org/10.1186/1758-3284-1-32

Adams JM, Kelly PN, Dakic A, Carotta S, Nutt SL, Strasser A. Role of cancer stem cells and cell survival in tumor development and maintenance. Cold Spring Harb Symp Quant Biol. 2008;73:451-9.

https://doi.org/10.1101/sqb.2008.73.004

Mezencev R, Mcdonald JF. Subcutenous Xenografts of Human T-Lineage Acute Lymphoblastic Leukemia Jurkat Cells in Nude Mice. In Vivo. 2011;25:603-7.

Ninomiya M, Abe A, Katsumi A, Xu J, Ito M, Arai F, et al. Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia. 2007;21:136-42.

https://doi.org/10.1038/sj.leu.2404432

Quimby F, Bosma M, Good R, Hansen C, Myers D, Richter C, et al. Hereditary Immunodeficiencies. En: Science NA of, editor. Immunodeficient Rodents: A Guide to Their Immunobiology, Husbandry, and Use. Washington, D.C.: National Academy Press; 1989.

Ceol CJ, Houvras Y. Uncharted Waters: Zebrafish Cancer Models Navigate a Course for Oncogene Discovery. En: Langenau DM, editor. Cancer and Zebrafish. Springer International Publishing; 2016. p. 411-37.

https://doi.org/10.1007/978-3-319-30654-4_1

Santoro MM. Zebrafish as a model to explore cell metabolism. Trends Endocrinol Metab. 2014;25:546-54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24997878

https://doi.org/10.1016/j.tem.2014.06.003

Berman JN, Kanki JP, Look AT. Zebrafish as a model for myelopoiesis during embryogenesis. Exp Hematol. 2005;33:997-1006.

https://doi.org/10.1016/j.exphem.2005.06.010

Xu C, Zon LI. The zebrafish as a model for human disease. En: Steve P, Ekker M, Farrell A, Baruner C, editores. Fish Physiology: Zebrafish. 1 st ed. Academic Press; 2010.

https://doi.org/10.1016/S1546-5098(10)02909-2

Murayama E, Kissa K, Zapata A, Lin H, Mordelet E, Handin RI, et al. Tracing Hematopoietic Precursor Migration to Successive Hematopoietic Organs during Zebrafish Development. Immunity. 2006;25:963-75.

https://doi.org/10.1016/j.immuni.2006.10.015

Teng Y, Xie X, Walker S, White DT, Mumm JS, Cowell JK. Evaluating human cancer cell metastasis in zebrafish. BMC Cancer. 2013;13:453.

https://doi.org/10.1186/1471-2407-13-453

Zheng W, Li Z, Nguyen AT, Li C, Emelyanov A, Gong Z. Xmrk, Kras and Myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma. PLoS One. 2014;9.

https://doi.org/10.1371/journal.pone.0091179

Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA, et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2004;2:0690-698.

https://doi.org/10.1371/journal.pbio.0020139

Jung IH, Leem GL, Jung DE, Kim MH, Kim EY, Kim SH, et al. Glioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish. Neuro Oncol. 2013;15:290-304.

https://doi.org/10.1093/neuonc/nos387

Le X, Pugach EK, Hettmer S, Storer NY, Liu J, Wills AA, et al. A novel chemical screening strategy in zebrafish identifies common pathways in embryogenesis and rhabdomyosarcoma development. Development. 2013;140:2354-64.

https://doi.org/10.1242/dev.088427

White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer. 2013;13:624-36.

https://doi.org/10.1038/nrc3589

Le X, Langenau DM, Keefe MD, Kutok JL, Neuberg DS, Zon LI. Heat shock- inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. PNAS. 2007;104:9410-5.

https://doi.org/10.1073/pnas.0611302104

Tobia C, Gariano G, De Sena G, Presta M. Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta. 2013;1832:1371-7.

https://doi.org/10.1016/j.bbadis.2013.01.016

Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, et al. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica. 2011;96:612-6.

https://doi.org/10.3324/haematol.2010.031401

Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. PNAS. 2005;102:6068-73.

https://doi.org/10.1073/pnas.0408708102

Traver D,Winzeler A, Stern HM, Mayhall EA, Langenau DM, Kutok JL, et al. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood. 2004;104:1298-305.

https://doi.org/10.1182/blood-2004-01-0100

Deeti S, O'Farrell S, Kennedy BN. Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response. J Pharmacol Toxicol Methods. 2014;69:1-8.

https://doi.org/10.1016/j.vascn.2013.09.002

Cómo citar

[1]
Gacha Garay, M.J. , Akle, V., Enciso, L. y Garavito Aguilar, Z.V. 2017. La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia. Revista Colombiana de Cancerología. 21, 4 (dic. 2017), 212–224.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2017-12-01

Número

Sección

Artículos de revisión