El microambiente peritumoral en la patogénesis del cáncer de próstata

Autores/as

DOI:

https://doi.org/10.35509/01239015.1109

Palabras clave:

neoplasias de la próstata, patología, diagnóstico, microambiente tumoral

Resumen

El cáncer de próstata (CP) es el segundo cáncer más común en hombres y la quinta causa de mortalidad por cáncer a nivel mundial. El CP se origina en un entorno tumoral que favorece la supresión del sistema inmunológico, donde las interacciones entre las células tumorales y los tejidos cercanos influyen en el avance de la enfermedad. El microambiente peritumoral (tejido adyacente al tumor) juega un papel esencial en la progresión del CP, al proporcionar señales que regulan la respuesta inmunitaria. Debido al papel fundamental del tejido peritumoral en la patogénesis del CP, este artículo tiene como objetivo identificar los mecanismos de interacción entre el tejido peritumoral y las células tumorales, los cuales podrían facilitar la identificación de biomarcadores para el diagnóstico temprano y el desarrollo de nuevas estrategias terapéuticas.

Biografía del autor/a

Elizabeth Vargas-Castellanos, Grupo Patología Oncológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

1 Grupo Patología Oncológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

2 Departamento de Investigaciones, Hospital Universitario Mayor Méderi, Bogotá, D. C., Colombia.

Dayana Rodríguez-Morales, Grupo Patología Oncológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

1 Grupo Patología Oncológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

3 Estudiante de la Maestría en Ciencias - Biotecnología, Universidad Nacional de Colombia, Bogotá, D. C., Colombia.

Rafael Parra-Medina, Grupo Patología Oncológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

1 Grupo Patología Oncológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia.

4 Instituto de Investigación, Fundación Universitaria de Ciencias de la Salud, Bogotá, D. C., Colombia.

Referencias bibliográficas

Bray F, Laversanne M, Sung H, Ferlay J, Siegel R, Soerjomataram I, et al. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. https://doi.org/10.3322/caac.21834

De Silva F, Alcorn J. A tale of two cancers: a current concise overview of breast and prostate cancer. Cancers. 2022;14(12):2954. https://doi.org/10.3390/cancers14122954

McKenney J. Mesenchymal tumors of the prostate. Mod Pathol. 2018;31(S1):133-42. https://doi.org/10.1038/modpathol.2017.155

Humphrey P. Histopathology of prostate cancer. Cold Spring Harb Perspect Med. 2017;7(10):a030411. https://doi.org/10.1101/cshperspect.a030411

Lee S, Shen M. Cell types of origin for prostate cancer. Curr Opin Cell Biol. 2015;37:35-41. https://doi.org/10.1016/j.ceb.2015.10.002

Blagoev K, Iordanov R, Zhou M, Fojo T, Bates S. Drug resistant cells with very large proliferative potential grow exponentially in metastatic prostate cancer. Oncotarget. 2021;12(1):15-21. https://doi.org/10.18632/oncotarget.27855

Wang Z, Shen M. Revisiting the concept of cancer stem cells in prostate cancer. Oncogene. 2011;30(11):1261-71. https://doi.org/10.1038/onc.2010.530

Wang Z, Mitrofanova A, Bergren S, Abate-Shen C, Cardiff R, Califano A, et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell of origin model for prostate cancer heterogeneity. Nat Cell Biol. 2013;15(3):274-83. https://doi.org/10.1038/ncb2697

Hägglöf C, Bergh A. The stroma-a key regulator in prostate function and malignancy. Cancers. 2012;4(2):531-48. https://doi.org/10.3390/cancers4020531

Armingol E, Officer A, Harismendy O, Lewis N. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet. 2021;22(2):71-88. https://doi.org/10.1038/s41576-020-00292-x

Rajbhandary S, Dhakal H, Shrestha S. Tumor immune microenvironment (TIME) to enhance antitumor immunity. Eur J Med Res. 2023;28(1):169. https://doi.org/10.1186/s40001-023-01125-3

Ma C, Zhou Y, Fanelli G, Stopsack K, Fiorentino M, Zadra G, et al. The prostate stromal transcriptome in aggressive and lethal prostate cancer. Mol Cancer Res. 2023;21(3):253-60. https://doi.org/10.1158/1541-7786.mcr-22-0627

Zhang S, Regan K, Najera J, Grinstaff M, Datta M, Nia H. The peritumor microenvironment: physics and immunity. Trends Cancer. 2023;9(8):609-23. https://doi.org/10.1016/j.trecan.2023.04.004

Aran D, Camarda R, Odegaard J, Paik H, Oskotsky B, Krings G, et al. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat Commun. 2017;8(1):1077. https://doi.org/10.1038/s41467-017-01027-z

Trujillo K, Heaphy C, Mai M, Vargas K, Jones A, Vo P, et al. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer. 2011;129(6):1310-21. https://doi.org/10.1002/ijc.25788

Bahmad H, Jalloul M, Azar J, Moubarak M, Samad T, Mukherji D, et al. Tumor microenvironment in prostate cancer: toward identification of novel molecular biomarkers for diagnosis, prognosis, and therapy development. Front Genet. 2021;12:652747. https://doi.org/10.3389/fgene.2021.652747

Torrealba N, Rodríguez-Berriguete G, Fraile B, Olmedilla G, Martínez-Onsurbe P, Guil-Cid M, et al. Expression of several cytokines in prostate cancer: correlation with clinical variables of patients. Relationship with biochemical progression of the malignance. Cytokine. 2017;89:105-15. https://doi.org/10.1016/j.cyto.2016.08.008

Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200(4):500-3. https://doi.org/10.1002/path.1427

Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):697-17. https://doi.org/10.1038/s41391-021-00340-5

Wang L, Geng H, Liu Y, Liu L, Chen Y, Wu F, et al. Hot and cold tumors: immunological features and the therapeutic strategies. MedComm. 2023;4(5):e343. https://doi.org/10.1002/mco2.343

Shahait M, Hakansson A, Daniel R, Hosny K, Davicioni E, Liu S, et al. Quantification and molecular correlates of tertiary lymphoid structures in primary prostate cancer. Prostate. 2024;84(8):709-16. https://doi.org/10.1002/pros.24684

Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas L, Benesova I, et al. The immune microenvironment in prostate cancer: a comprehensive review. Oncology. 2025;103(6):521-45. https://doi.org/10.1159/000541881

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31-46. https://doi.org/10.1158/2159-8290.cd-21-1059

Watson P, Arora V, Sawyers C. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701-11. https://doi.org/10.1038/nrc4016

Sobhani N, Neeli P, D'Angelo A, Pittacolo M, Sirico M, Galli I, et al. AR-V7 in metastatic prostate cancer: a strategy beyond redemption. Int J Mol Sci. 2021;22(11):5515. https://doi.org/10.3390/ijms22115515

Östman A, Augsten M. Cancer-associated fibroblasts and tumor growth - bystanders turning into key players. Curr Opin Genet Dev. 2009;19(1):67-73. https://doi.org/10.1016/j.gde.2009.01.003

Gascard P, Tlsty T. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev. 2016;30(9):1002-19. https://doi.org/10.1101/gad.279737.116

Dai J, Lu Y, Roca H, Keller J, Zhang J, McCauley L, et al. Immune mediators in the tumor microenvironment of prostate cancer. Chin J Cancer. 2017;36(1):29. https://doi.org/10.1186/s40880-017-0198-3

DeNardo D, Ruffell B. Macrophages as regulators of tumor immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369-82. https://doi.org/10.1038/s41577-019-0127-6

Ferrara N, Adamis A. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385-403. https://doi.org/10.1038/nrd.2015.17

Killingsworth M, Wu X. Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate. Pathobiology. 2011;78(1):24-34. https://doi.org/10.1159/000322739

Adler H, McCurdy M, Kattan M, Timme T, Scardino P, Thompson T. Elevated levels of circulating interleukin-6 and transforming growth factor-β1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161(1):182-7. https://doi.org/10.1016/S0022-5347(01)62092-5

Drachenberg D, Elgamal A, Rowbotham R, Peterson M, Murphy G. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate. 1999;41(2):127-33. https://doi.org/10.1002/(sici)1097-0045(19991001)41:2%3C127::aid-pros7%3E3.0.co;2-h

Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):1208-15. https://doi.org/10.1172/jci81135

Becker A, Thakur B, Weiss J, Kim H, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30(6):836-48. https://doi.org/10.1016/j.ccell.2016.10.009

Farran A, Allehaibi H, Rosado A. Cancer and microbiome. En: Narayan B, editor. Microbial ecology. Boca Ratón: CRC Press; 2024.

Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski T. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359(6382):1366-70. https://doi.org/10.1126/science.aar6918

DesLoges J, McKay R, Swafford A, Sepich-Poore G, Knight R, Parsons J. The microbiome and prostate cancer. Prostate Cancer Prostatic Dis. 2022;25(2):159-64. https://doi.org/10.1038/s41391-021-00413-5

Montironi R, Diamanti L, Pomante R, Thompson D, Bartels P. Subtle changes in benign tissue adjacent to prostate neoplasia detected with a Bayesian belief network. J Pathol. 1997;182(4):442-9. https://doi.org/10.1002/(sici)1096-9896(199708)182:4%3C442::aid-path866%3E3.0.co;2-p

Bartels P, Montironi R, da Silva V, Hamilton P, Thompson D, Vaught L, et al. Tissue architecture analysis in prostate cancer and its precursors: an innovative approach to computerized histometry. Eur Urol. 1999;35(5-6):484-91. https://doi.org/10.1159/000019884

Peng Z, Cheng Y, Tan B, Kang L, Tian Z, Zhu Y, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol. 2012;30(3):253-60. https://doi.org/10.1038/nbt.2122

Bustin S. Molecular biology of the cell, sixth edition; ISBN: 9780815344643; and molecular biology of the cell, sixth edition, the problems book; ISBN 9780815344537. Int J Mol Sci. 2015;16-12:28123-5. https://doi.org/10.3390/ijms161226074

Reyes P, Ashraf M, Brown K. Physiology, cellular messengers. StatPearls Publishing, Treasure Island; 2025. PMID: 30844181.

Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, et al. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther. 2024;9(1):196. https://doi.org/10.1038/s41392-024-01888-z

Sever R, Brugge J. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5(4): a006098. https://doi.org/10.1101/cshperspect.a006098

Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013

Quail D, Joyce J. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423-37. https://doi.org/10.1038/nm.3394

Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers. Cancers. 2021;13(20):5059. https://doi.org/10.3390/cancers13205059

Wiese W, Barczuk J, Racinska O, Siwecka N, Rozpedek-Kaminska W, Slupianek A, et al. PI3K/Akt/mTOR signaling pathway in blood malignancies- new therapeutic possibilities. Cancers. 2023;15(21):5297. https://doi.org/10.3390/cancers15215297

Glabman R, Choyke P, Sato N. Cancer-associated fibroblasts: tumorigenicity and targeting for cancer therapy. Cancers. 2022;14(16):3906. https://doi.org/10.3390/cancers14163906

Chandra B, Sarkar S, Rout L, Mandal M. The transformation of cancer- associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Lett. 2021;520:222-32. https://doi.org/10.1016/j.canlet.2021.08.002

Louault K, Porras T, Lee M-H, Muthugounder S, Kennedy R, Blavier L, et al. Fibroblasts and macrophages cooperate to create a pro-tumorigenic and immune resistant environment via activation of TGF-β/IL-6 pathway in neuroblastoma. Oncoimmunology. 2022;11(1):2146860. https://doi.org/10.1080/2162402x.2022.2146860

Mashouri L, Yousefi H, Aref A, Ahadi A, Molaei F, Alahari S. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1):75. https://doi.org/10.1186/s12943-019-0991-5

Stefańska K, Józkowiak M, Angelova A, Shibli J, Golkar-Narenji A, Antosik P, et al. The role of exosomes in human carcinogenesis and cancer therapy-recent findings from molecular and clinical research. Cells. 2023;12(3):356. https://doi.org/10.3390/cells12030356

Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 2019;1871(2):455-68. https://doi.org/10.1016/j.bbcan.2019.04.004

Ziaee S, Chu G, Huang J-M, Sieh S, Chung L. Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol. 2015;4(4):438-54. https://doi.org/10.3978/j.issn.2223-4683.2015.04.10

Shorning B, Dass M, Smalley M, Pearson H. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. Int J Mol Sci. 2020;21(12):4507. https://doi.org/10.3390/ijms21124507

Kalsbeek A, Chan E, Corcoran N, Hovens C, Hayes V. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget. 2017;8(41):71342-57. https://doi.org/10.18632/oncotarget.19926

Zohar Y, Mabjeesh N. Targeting HIF-1 for prostate cancer: a synthesis of preclinical evidence. Expert Opin Ther Targets. 2023;27(8):715-31. https://doi.org/10.1080/14728222.2023.2248381

Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu Y-N, et al. MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol. 2023 ;28:101613. https://doi.org/10.1016/j.tranon.2022.101613

Bedeschi M, Marino N, Cavassi E, Piccinini F, Tesei A. Cancer-associated fibroblast: role in prostate cancer progression to metastatic disease and therapeutic resistance. Cells. 2023;12(5):802. https://doi.org/10.3390/cells12050802

Verrillo C, Quaglia F, Shields C, Lin S, Kossenkov A, Tang H-Y, et al. Expression of the αVβ3 integrin affects prostate cancer sEV cargo and density and promotes sEV pro-tumorigenic activity in vivo through a GPI- anchored receptor, NgR2. J Extracell Vesicles. 2024;13(8):e12482. https://doi.org/10.1002/jev2.12482

Corti M, Lorenzetti S, Ubaldi A, Zilli R, Marcoccia D. Endocrine disruptors and prostate cancer. Int J Mol Sci. 2022;23(3):1216. https://doi.org/10.3390/ijms23031216

Akoto T, Saini S. Role of exosomes in prostate cancer metastasis. Int J Mol Sci. 2021;22(7):3528. https://doi.org/10.3390/ijms22073528

Luthold C, Hallal T, Labbé D, Bordeleau F. The extracellular matrix stiffening: a trigger of prostate cancer progression and castration resistance? Cancers. 2022;14(12):2887. https://doi.org/10.3390/cancers14122887

Ciernikova S, Earl J, García M, Stevurkova V, Carrato A, Smolkova B. Epigenetic landscape in pancreatic ductal adenocarcinoma: on the way to overcoming drug resistance? Int J Mol Sci. 2020;21(11):4091. https://doi.org/10.3390/ijms21114091

Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):210. https://doi.org/10.1038/s41392-023-01480-x

Feinberg A, Koldobskiy M, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17(5):284-99. https://doi.org/10.1038/nrg.2016.13

Ge Y-Z, Xu L-W, Jia R-P, Xu Z, Feng Y-M, Wu R, et al. The association between RASSF1A promoter methylation and prostate cancer: evidence from 19 published studies. Tumour Biol. 2014 ;35(4):3881-90. https://doi.org/10.1007/s13277-013-1515-3

Strand S, Orntoft T, Sorensen K. Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci. 2014;15(9):16544-76. https://doi.org/10.3390/ijms150916544

Burkhart D, Morel K, Wadosky K, Labbé D, Galbo P, Dalimov Z, et al. Evidence that EZH2 deregulation is an actionable therapeutic target for prevention of prostate cancer. Cancer Prev Res. 2020;13(12):979-88. https://doi.org/10.1158/1940-6207.capr-20-0186

Wu X, Scott H, Carlsson S, Sjoberg D, Cerundolo L, Lilja H, et al. Increased EZH2 expression in prostate cancer is associated with metastatic recurrence following external beam radiotherapy. Prostate. 2019;79(10):1079-89. https://doi.org/10.1002/pros.23817

Guan C, Zhang L, Wang S, Long L, Zhou H, Qian S, et al. Upregulation of MicroRNA-21 promotes tumorigenesis of prostate cancer cells by targeting KLF5. Cancer Biol Ther. 2019;20(8):1149-61. https://doi.org/10.1080/15384047.2019.1599659

Yang Y, Guo J-X, Shao Z-Q. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med. 2017;10(1):87-91. https://doi.org/10.1016/j.apjtm.2016.09.011

Wang C, Zhang Y, Gao W-Q. The evolving role of immune cells in prostate cancer. Cancer Lett. 2022;525:9-21. https://doi.org/10.1016/j.canlet.2021.10.027

Solinas C, Aiello M, Rozali E, Lambertini M, Willard-Gallo K, Migliori E. Programmed cell death-ligand 2: a neglected but important target in the immune response to cancer? Transl Oncol. 2020;13(10):100811. https://doi.org/10.1016/j.tranon.2020.100811

Wang Y, Du J, Gao Z, Sun H, Mei M, Wang Y, et al. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br J Cancer. 2023;128(7):1196-207. https://doi.org/10.1038/s41416-022-02084-y

Noori M, Azizi S, Mahjoubfar A, Abbasi F, Fayyaz F, Mousavian A-H, et al. Efficacy and safety of immune checkpoint inhibitors for patients with prostate cancer: a systematic review and meta-analysis. Front Immunol. 2023;14:1181051. https://doi.org/10.3389/fimmu.2023.1181051

Thompson R, Allison J, Kwon E. Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy for the treatment of prostate cancer. Urol Oncol. 2006;24(5):442-7. https://doi.org/10.1016/j.urolonc.2005.08.011

Kwek S, Cha E, Fong L. Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nat Rev Cancer. 2012;12(4):289-97. https://doi.org/10.1038/nrc3223

He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch F. TIM-3, a promising target for cancer immunotherapy. Onco Targets Ther. 2018;11:7005-9. https://doi.org/10.2147/ott.s170385

Piao Y-R, Jin Z-H, Yuan K-C, Jin X-S. Retracted article: analysis of Tim-3 as a therapeutic target in prostate cancer. Tumour Biol. 2014;35(11):11409-14. https://doi.org/10.1007/s13277-014-2464-1

Tang L, Shao H, Wu Y, Wang J, Qian X, He L, et al. Dominant negative TGFβ receptor II and truncated TIM3 enhance the antitumor efficacy of CAR-T-cell therapy in prostate cancer. Int Immunopharmacol. 2023;124(Pt A):110807. https://doi.org/10.1016/j.intimp.2023.110807

Zhang X, Chen H, Han J, Wang Z, Guo Y, Zhou Z, et al. ATM-AMPKα mediated LAG-3 expression suppresses T cell function in prostate cancer. Cell Immunol. 2023;393-394:104773. https://doi.org/10.1016/j.cellimm.2023.104773

Andrews L, Cillo A, Karapetyan L, Kirkwood J, Workman C, Vignali D. Molecular pathways and mechanisms of LAG3 in cancer therapy. Clin Cancer Res. 2022;28(23):5030-9. https://doi.org/10.1158/1078-0432.ccr-21-2390

Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y, et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer. 2018;9(5-6):176-89. https://doi.org/10.18632/genesandcancer.180

Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, et al. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol. 2020;13(1):83. https://doi.org/10.1186/s13045-020-00917-y

Gao J, Ward J, Pettaway C, Shi L, Subudhi S, Vence L, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017;23(5):551-5. https://doi.org/10.1038/nm.4308

Nishizaki D, Kurzrock R, Miyashita H, Adashek J, Lee S, Nikanjam M, et al. Viewing the immune checkpoint VISTA: landscape and outcomes across cancers. ESMO Open. 2024;9(4):102942. https://doi.org/10.1016/j.esmoop.2024.102942

González-Ochoa S, Tellez-Bañuelos M, Méndez-Clemente A, Bravo-Cuellar A, Hernández Flores G, Palafox-Mariscal L, et al. Combination blockade of the IL6R/STAT-3 axis with TIGIT and its impact on the functional activity of NK cells against prostate cancer cells. J Immunol Res. 2022;2022:1810804. https://doi.org/10.1155/2022/1810804

Wang F, Liu S, Liu F, Xu T, Ma J, Liang J, et al. TIGIT immune checkpoint blockade enhances immunity of human peripheral blood NK cells against castration-resistant prostate cancer. Cancer Lett. 2023;568:216300. https://doi.org/10.1016/j.canlet.2023.216300

Yeo J, Ko M, Lee D-H, Park Y, Jin H-S. TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals. 2021;14(3):200. https://doi.org/10.3390/ph14030200

Sætersmoen M, Kotchetkov I, Torralba-Raga L, Mansilla-Soto J, Sohlberg E, Krokeide S, et al. Targeting HLA-E-overexpressing cancers with a NKG2A/C switch receptor. Med. 2025;6(2):100521. https://doi.org/10.1016/j.medj.2024.09.010

Pinho-Schwermann M, Carneiro B, Carlsen L, Huntington K, Srinivasan P, George A, et al. Androgen receptor signaling blockade enhances NK cell- mediated killing of prostate cancer cells and sensitivity to NK cell checkpoint blockade. bioRxiv. 2023;2023.11.15:567201. https://doi.org/10.1101/2023.11.15.567201

Heidegger I, Fotakis G, Offermann A, Goveia J, Daum S, Salcher S, et al. Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol Cancer. 2022;21(1):132. https://doi.org/10.1186/s12943-022-01597-7

Liu B, Li X, Wang D, Yu Y, Lu D, Chen L, et al. CEMIP promotes extracellular matrix-detached prostate cancer cell survival by inhibiting ferroptosis. Cancer Sci. 2022;113(6):2056-70. https://doi.org/10.1111/cas.15356

Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Macrophage dynamics in prostate cancer: Molecular to therapeutic insights. Biomed Pharmacother. 2024;177:117002. https://doi.org/10.1016/j.biopha.2024.117002

Yu G, Corn P, Mak C, Liang X, Zhang M, Troncoso P, et al. Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization. Proc Natl Acad Sci U S A. 2024;121(33):e2402903121. https://doi.org/10.1073/pnas.2402903121

Sutherland S, Ju X, Horvath L, Clark G. Moving on from Sipuleucel-T: new dendritic cell vaccine strategies for prostate cancer. Front Immunol. 2021;12:641307. https://doi.org/10.3389/fimmu.2021.641307

Hawlina S, Zorec R, Chowdhury H. Potential of personalized dendritic cell-based immunohybridoma vaccines to treat prostate cancer. Life. 2023;13(7):1498. https://doi.org/10.3390/life13071498

Yang Y, Attwood K, Bshara W, Mohler J, Guru K, Xu B, et al. High intratumoral CD8(+) T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. Prostate. 2021;81(1):20-8. https://doi.org/10.1002/pros.24068

Davidsson S, Ohlson A-L, Andersson S-O, Fall K, Meisner A, Fiorentino M, et al. CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3(+) regulatory T cells with respect to lethal prostate cancer. Mod Pathol. 2013;26(3):448-55. https://doi.org/10.1038/modpathol.2012.164

Karpisheh V, Mousavi S, Naghavi P, Fathi M, Mohammadpour M, Aghebati-Maleki L, et al. The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci. 2021;284:119132. https://doi.org/10.1016/j.lfs.2021.119132

Saudi A, Banday V, Zirakzadeh A, Selinger M, Forsberg J, Holmbom M, et al. Immune-activated b cells are dominant in prostate cancer. Cancers. 2023;15(3):920. https://doi.org/10.3390/cancers15030920

Zorko N, Makovec A, Elliott A, Kellen S, Lozada J, Arafa A, et al. Natural killer cell infiltration in prostate cancers predict improved patient outcomes. Prostate Cancer Prostatic Dis. 2025;28(1):129-37. https://doi.org/10.1038/s41391-024-00797-0

Koinis F, Xagara A, Chantzara E, Leontopoulou V, Aidarinis C, Kotsakis A. Myeloid-derived suppressor cells in prostate cancer: present knowledge and future perspectives. Cells. 2021;11(1):20. https://doi.org/10.3390/cells11010020

Hempel H, Maynard J, Heaphy C, Lu J, De Marzo A, Lotan T, et al. Differential mast cell phenotypes in benign versus cancer tissues and prostate cancer oncologic outcomes. J Pathol. 2021;253(4):415-26. https://doi.org/10.1002/path.5606

Cómo citar

[1]
Vargas Castellanos, E. et al. 2025. El microambiente peritumoral en la patogénesis del cáncer de próstata. Revista Colombiana de Cancerología. 29, 3 (sep. 2025), 103–117. DOI:https://doi.org/10.35509/01239015.1109.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

30-09-2025

Número

Sección

Artículos de revisión
Crossref Cited-by logo
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Datos de los fondos